scholarly journals Research the Effect of Process Parameters on Friction Stir Welded AA6063-ETP Copper joint using Taguchi Technique

Aluminium and copper, or their combination finds application in heat sinks because of their excellent thermal conductivity. In the present study, Al–6063 and ETP copper were lap welded using friction stir welding wherein the aluminum alloy plate was placed on top of the copper plate. The optimum process parameters were found using Taguchi L9 orthogonal array. The process parameters namely tool rotational speed, tool traverse speed and thickness of zinc inter-filler material were considered. The optimal process parameters were ascertained with respect to the thermal conductivity of weld. The predicted optimum value of thermal conductivity was verified by conducting the confirmation run using the optimal parameters. Analysis of variance depicted that all the three process parameters were significant, wherein the tool rotational speed and the tool traverse speed were the most dominant factors contributing to thermal conductivity.

2020 ◽  
Vol 17 (4) ◽  
pp. 491-507 ◽  
Author(s):  
Nitin Panaskar ◽  
Ravi Prakash Terkar

Purpose Recently, several studies have been performed on lap welding of aluminum and copper using friction stir welding (FSW). The formation of intermetallic compounds at the weld interface hampers the weld quality. The use of an intermediate layer of a compatible material during welding reduces the formation of intermetallic compounds. The purpose of this paper is to optimize the FSW process parameters for AA6063-ETP copper weld, using a compatible zinc intermediate filler metal. Design/methodology/approach In the present study, a three-level, three-factor central composite design (CCD) has been used to determine the effect of various process parameters, namely, tool rotational speed, tool traverse speed and thickness of inter-filler zinc foil on ultimate tensile strength of the weld. A total of 60 experimental data were fitted in the CCD. The experiments were performed with tool rotational speeds of 1,000, 1,200 and 1,400 rpm each of them with tool traverse speeds of 5, 10 and 15 mm/min. A zinc inter-filler foil of 0.2 and 0.4 mm was also used. The macrograph of the weld surface under different process parameters and the tensile strength of the weld have been investigated. Findings The feasibility of joining 3 mm thick AA6063-ETP copper using zinc inter-filler is established. The regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination (R2) value of 0.9759 and model F-value of 240.33. A good agreement between the prediction model and experimental findings validates the reliability of the developed model. The tool rotational speed, tool traverse speed and thickness of inter-filler zinc foil significantly affected the tensile strength of the weld. The optimal conditions found for the weld were, rotational speed of 1,212.83 rpm and traverse speed of 9.63 mm/min and zinc foil thickness is 0.157 mm; by using optimized values, ultimate tensile strength of 122.87 MPa was achieved, from the desirability function. Originality/value Aluminium and copper sheets could be joined feasibly using a zinc inter-filler. The maximum tensile strength of joints formed by inter-filler (122.87 MPa) was significantly better as compared to those without using inter-filler (83.78 MPa). The optimum process parameters to achieve maximum tensile strength were found by CCD.


The effect of process parameters such as tool rotational speed and tool traverse speed on mechanical properties of AA-6063 and ETP Cu lap joint is investigated. At present, Friction Stir Welding is being employed to join dissimilar metals. However, the difference in the physical properties of the base metals makes it difficult to join these metals. The present study investigates the effect of using a compatible intermediate layer on weld strength. Different joint defects and their effect on joint strength has been discussed. The experiments were conducted with tool rotational speed of 800, 1000 and 1200 rpm each and with tool traverse speeds of 10, 15 and 20 mm/min. The dissimilar metals are successfully lap welded with fair tensile strength. The effect of process parameters on weld strength and defect formation is discussed


Author(s):  
Dhanis Paramaguru ◽  
Srinivasa Rao Pedapati ◽  
Mokhtar Awang ◽  
Hamed Mohebbi

In this study, AA5052 joints are fabricated by underwater friction stir welding and the process parameters are optimized for maximum UTS value by utilizing a developed mathematical model. The experiments are conducted by using Taguchi’s L9 orthogonal array, and polynomial regression analysis is applied to generate the model. Statistical tools such as analysis of variance (ANOVA), coefficient of determination is applied to check the adequacy of the developed model at 95% confidence level. Type of welding tools is identified as the most influencing factor on deciding the mechanical properties of the joint, followed by tool rotational speed and tool welding speed. The optimum process parameters are identified by the Taguchi parametric design method. The results indicated that the optimum process parameters combinations for better mechanical properties is attained at tool rotational speed of 1500 rpm and tool welding speed of 100 mm/min, using taper threaded cylindrical tool. A maximum UTS value of 225.48 MPa is obtained and it is verified by confirmation test.


2020 ◽  
Vol 17 (4) ◽  
pp. 519-526 ◽  
Author(s):  
Senthilnathan T. ◽  
Sujay Aadithya B. ◽  
Balachandar K.

Purpose This study aims to predict the mechanical properties such as equivalent tensile strength and micro-hardness of friction-stir-welded dissimilar aluminium alloy plates AA 6063-O and AA 2014-T6, using artificial neural network (ANN). Design/methodology/approach The ANN model used for the experiment was developed through back propagation algorithm. The input parameter of the model consisted of tool rotational speed and weld-traverse speed whereas the output of the model consisted of mechanical properties (tensile strength and hardness) of the joint formed by friction-stir welding (FSW) process. The ANN was trained for 60% of the experimental data. In addition, the impact of the process parameters (tool rotational speed and weld-traverse speed) on the mechanical properties of the joint was determined by Taguchi Grey relational analysis. Findings Subsequently, testing and validation of the ANN were done using experimental data, which were not used for training the network. From the experiment, it was inferred that the outcomes of the ANN are in good agreement with the experimental data. The result of the analyses showed that the tool rotational speed has more impact than the weld-traverse speed. Originality/value The developed neural network can be used to predict the mechanical properties of the weld. Results indicate that the network prediction is similar to the experiment results. Overall regression value computed for training, validation and testing is greater than 0.9900 for both tensile strength and microhardness. In addition, the percentage error between experimental and predicted values was found to be minimal for the mechanical properties of the weldments. Therefore, it can be concluded that ANN is a potential tool for predicting the mechanical properties of the weld formed by FSW process. Similarly, the results of Taguchi Grey relational analysis can be used to optimize the process parameters of the weld process and it can be applied extensively to ascertain the most prominent factor. The results of which indicates that rotational speed of 1,270 rpm and traverse speed of 30 mm/min are to be the optimized process parameters. The result also shows that tool rotational speed has more impact on the mechanical properties of the weld than that of traverse speed.


Author(s):  
Sumit Jain ◽  
R.S. Mishra

In this research, a defect-free dissimilar weld joint of AA7075-T6 and AA6061-T6 reinforced with Al2O3 nanoparticles was fabricated via friction stir welding (FSW). The influence of tool rotational speed (700, 900 and 1100 rpm), traverse speed (40, 50 and 60 mm/min) with varying volume fractions of Al2O3 nanoparticles (4%, 7% and 10%) on microstructural evolution and mechanical properties were investigated. The augmentation of various mechanical properties is based on the homogeneity of particle dispersion and grains refinement in the SZ of the FSWed joint. The findings revealed that the remarkable reduction in grain size in the SZ was observed owing to the incorporation of Al2O3 nanoparticles produces the pinning effect, which prevents the growth of grain boundaries by dynamic recrystallization (DRX). The increasing volume fraction of Al2O3 nanoparticles enhanced the mechanical properties such as tensile strength, % elongation and micro-hardness. Agglomeration of particles was observed in the SZ of the FSWed joints produced at lower tool rotational speed of 700 rpm and higher traverse speed of 60 mm/min due to unusual material flow. Homogenous particle dispersion and enhanced material mixing ensue at higher rotational speed of 1100 rpm and lower traverse speed of 40 mm/min exhibit higher tensile strength and micro-hardness.


2017 ◽  
pp. 1293-1305
Author(s):  
G. Venkateswarlu ◽  
M.J. Davidson ◽  
G.R.N. Tagore ◽  
P. Sammaiah

Friction stir processing (FSP) has been developed on the principles of friction stir welding (FSW) as an effective and efficien new method for grain refinement and microstructural modification, providing intense plastic deformation as well as higher strain rates than other conventional severe plastic deformation methods. FSP produces an equiaxed homogeneous microstructure consisting of fine grains, resulting in the enhancement of the properties of the material at room temperature. The objective of the present paper is to examine the influence of friction stir processing (FSP) parameters namely tool rotational speed (RS), tool traverse speed (TS) and tool tilt angle (TA) on the microstructures of friction stir processed AZ31B-O magnesium alloy. This investigation has focused on the microstructural changes occurred in the dynamically recrystallised nugget zone/ stir zone and the thermo mechanically affected zone during FSP. The results presented in this work indicate that all the three FSP process parameters have a significant effect on the resulting microstructure and also found that the rotational speed has greatly influenced the homogenization of the material. The grain refinement is higher at intermediate rotational speed (1150 rpm), traverse speed (32 mm / min and tilt angle (10). It is established that FSP can be a good grain refinement method for improving the properties of the material.


2014 ◽  
Vol 592-594 ◽  
pp. 234-239 ◽  
Author(s):  
A. Thangarasu ◽  
N. Murugan ◽  
I. Dinaharan ◽  
S.J. Vijay

Friction stir processing (FSP) is as a novel modifying technique to synthesize surface composites. An attempt has been made to synthesis AA6082/TiC surface composite using FSP and to analyze the effect of tool rotational speed on microstructure and microhardness of the same. The tool rotational speed was varied from 800 rpm to 1600 rpm in steps of 400 rpm. The traverse speed, axial force, groove width and tool pin profile were kept constant. Scanning electron microscopy was employed to study the microstructure of the fabricated surface composites. The results indicated that the tool rotational speed significantly influenced the area of the surface composite and distribution of TiC particles. Higher rotational speed provided homogenous distribution of TiC particles while lower rotational speed caused poor distribution of TiC particles in the surface composite. The effect of the tool rotational speed on microhardness is also reported in this paper.


2015 ◽  
Vol 11 (1) ◽  
pp. 32-42 ◽  
Author(s):  
K Panneerselvam ◽  
Kasirajan Lenin

Purpose – The purpose of this paper is to weld polypropylene (PP) material by friction stir welding (FSW) process. The input process parameters considered were: tool pin profile, feed rate and tool rotational speed and the process output characteristics were tensile strength, Shore-D hardness, Rockwell hardness, Izod strength, Charpy strength and nugget area. Design/methodology/approach – Optimization of process parameters were carried out based on response surface methodology (RSM) and significant parameters were obtained by performing analysis of variance (ANOVA). Findings – The optimized results were the threaded pin profile for feed of 60 mm/min and tool rotational speed of 1,500 rpm. A confirmation test was carried out to verify the optimized results. Originality/value – In this paper, the process parameters were optimized based on RSM. This is newly adopted optimization techniques in the FSW process of PP materials and also it gives better results.


Author(s):  
Mohd Atif Wahid ◽  
Zahid A Khan ◽  
Arshad Noor Siddiquee ◽  
Rohit Shandley ◽  
Nidhi Sharma

In friction stir welding of heat treatable aluminum alloys, the thermal cycles developed during the joining process result in softening of the joints which adversely affect their mechanical properties. Underwater friction stir welding can be a process of choice to overcome this problem due to low peak temperature and short dwell time involved during the process. Consequently, this article presents a study pertaining to the underwater friction stir welding of aluminum alloy 6082-T6 with an aim to develop a mathematical model to optimize the underwater friction stir welding process parameters for obtaining maximum tensile strength. The results of the study reveal that the tool shoulder diameter (d), tool rotational speed (ω), welding speed (v), and second-order term of rotational speed, that is, ω2, significantly affect the tensile strength of the joint. The maximum tensile strength of 241 MPa which is indeed 79% of the base metal strength and 10.7% higher than that of conventional (air) friction stir welding joint was achieved at an optimal setting of the underwater friction stir welding parameters, that is, tool rotational speed of 900 r/min, the welding speed of 80 mm/min, and a tool shoulder of 17 mm. The article also presents the results of temperature variation, the macrostructural and microstructural investigations, microhardness, and fractography of the joint obtained at the optimal setting for underwater friction stir welded (UFSWed) joint.


Author(s):  
G. Venkateswarlu ◽  
M.J. Davidson ◽  
G.R.N. Tagore ◽  
P. Sammaiah

Friction stir processing (FSP) has been developed on the principles of friction stir welding (FSW) as an effective and efficien new method for grain refinement and microstructural modification, providing intense plastic deformation as well as higher strain rates than other conventional severe plastic deformation methods. FSP produces an equiaxed homogeneous microstructure consisting of fine grains, resulting in the enhancement of the properties of the material at room temperature. The objective of the present paper is to examine the influence of friction stir processing (FSP) parameters namely tool rotational speed (RS), tool traverse speed (TS) and tool tilt angle (TA) on the microstructures of friction stir processed AZ31B-O magnesium alloy. This investigation has focused on the microstructural changes occurred in the dynamically recrystallised nugget zone/ stir zone and the thermo mechanically affected zone during FSP. The results presented in this work indicate that all the three FSP process parameters have a significant effect on the resulting microstructure and also found that the rotational speed has greatly influenced the homogenization of the material. The grain refinement is higher at intermediate rotational speed (1150 rpm), traverse speed (32 mm / min and tilt angle (10). It is established that FSP can be a good grain refinement method for improving the properties of the material.


Sign in / Sign up

Export Citation Format

Share Document