scholarly journals Research of Various Techniques for Evaluating Nodal Trust in Hierarchical WSN

In today’s modern world the wireless sensor networks have become a crucial tool to serve various purposes. The applications falling in range of wireless sensor networks are vast and tend to conquer our everyday life. It was initially designed for surveillance and monitoring for defense related operations but then it also proved to be boon for the health, traffic, consumer and industrial areas. Also, it is one of the most popular technologies for smart cities. However, the wireless sensor networks are highly prone to security attacks, and due to the dynamic, collective and collaborative behavior of sensor networks a secure data transfer has become a challenging task. The deployed sensor nodes, especially in the multi hop environment can get compromised and can behave maliciously. Therefore it becomes necessary to assess the trust worthiness or reliance of the sensor node over the other present in the network. Several researches have investigated various techniques for determining the nodal trust in WSN. This paper discusses the major challenges in wireless sensor network, potential attacks occurring due to compromised nodes along with the different types of trust models. It also figures out some of the existing trust models which are used in evaluating nodal trust in wireless sensor networks.`

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Author(s):  
Hoang Dang Hai ◽  
Thorsten Strufe ◽  
Pham Thieu Nga ◽  
Hoang Hong Ngoc ◽  
Nguyen Anh Son ◽  
...  

Sparse  Wireless  Sensor  Networks  using several  mobile  nodes  and  a  small  number  of  static sensor  nodes  have  been  widely  used  for  many applications,  especially  for  traffic-generated  pollution monitoring.  This  paper  proposes  a  method  for  data collection and forwarding using Mobile Elements (MEs), which are moving on predefined trajectories in contrast to previous works that use a mixture of MEsand static nodes. In our method, MEscan be used as data collector as well as dynamic bridges for data transfer. We design the  trajectories  in  such  a  way,  that  they  completely cover  the  deployed  area  and  data  will  be  gradually forwarded  from  outermost  trajectories  to  the  center whenever  a  pair  of MEs contacts  each  other  on  an overlapping road distance of respective trajectories. The method  is based  on  direction-oriented  level  and  weight assignment.  We  analyze  the  contact  opportunity  for data  exchange  while MEs move.  The  method  has  been successfully tested for traffic pollution monitoring in an urban area.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 322 ◽  
Author(s):  
Damien Wohwe Sambo ◽  
Blaise Yenke ◽  
Anna Förster ◽  
Paul Dayang

During the past few years, Wireless Sensor Networks (WSNs) have become widely used due to their large amount of applications. The use of WSNs is an imperative necessity for future revolutionary areas like ecological fields or smart cities in which more than hundreds or thousands of sensor nodes are deployed. In those large scale WSNs, hierarchical approaches improve the performance of the network and increase its lifetime. Hierarchy inside a WSN consists in cutting the whole network into sub-networks called clusters which are led by Cluster Heads. In spite of the advantages of the clustering on large WSNs, it remains a non-deterministic polynomial hard problem which is not solved efficiently by traditional clustering. The recent researches conducted on Machine Learning, Computational Intelligence, and WSNs bring out the optimized clustering algorithms for WSNs. These kinds of clustering are based on environmental behaviors and outperform the traditional clustering algorithms. However, due to the diversity of WSN applications, the choice of an appropriate paradigm for a clustering solution remains a problem. In this paper, we conduct a wide review of proposed optimized clustering solutions nowadays. In order to evaluate them, we consider 10 parameters. Based on these parameters, we propose a comparison of these optimized clustering approaches. From the analysis, we observe that centralized clustering solutions based on the Swarm Intelligence paradigm are more adapted for applications with low energy consumption, high data delivery rate, or high scalability than algorithms based on the other presented paradigms. Moreover, when an application does not need a large amount of nodes within a field, the Fuzzy Logic based solution are suitable.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


Many researches have been proposed for efficiency of data transmission from sensor nodes to sink node for energy efficiency in wireless sensor networks. Among them, cluster-based methods have been preferred In this study, we used the angle formed with the sink node and the distance of the cluster members to calculate the probability of cluster head. Each sensor node sends measurement values to header candidates, and the header candidate node measures the probability value of the header with the value received from its candidate member nodes. To construct the cluster members, the data transfer direction is considered. We consider angle, distance, and direction as cluster header possibility value. Experimental results show that data transmission is proceeding in the direction of going to the sink node. We calculated and displayed the header possibility value of the neighbor nodes of the sensor node and confirmed the candidates of the cluster header for data transfer as the value. In this study, residual energy amount of each sensor node is not considered. In the next study, we calculate the value considering the residual energy amount of the node when measuring the header possibility value of the cluster.


2018 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sayed Seno ◽  
Doaa Abd Ali ◽  
Mohammed Mohammed

Recently, different applications of wireless sensor networks (WSNs) in the industry fields using different data transfer protocols has been developed. As the energy of sensor nodes is limited, prolonging network lifetime in WSNs considered a significant occurrence. To develop network permanence, researchers had considered energy consuming in routing protocols of WSNs by using modified Low Energy Adaptive Clustering Hierarchy. This article presents a developed effective transfer protocols for autonomic WSNs. An efficient routing scheme for wireless sensor network regarded as significant components of electronic devices is proposed. An optimal election probability of a node to be cluster head has being presented. In addition, this article uses a Voronoi diagram, which decomposes the nodes into zone around each node. This diagram used in management architecture for WSNs.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3835 ◽  
Author(s):  
Muhammad Sohail ◽  
Shafiullah Khan ◽  
Rashid Ahmad ◽  
Dhananjay Singh ◽  
Jaime Lloret

Internet of things (IoT) is a very important research area, having many applications such as smart cities, intelligent transportation system, tracing, and smart homes. The underlying technology for IoT are wireless sensor networks (WSN). The selection of cluster head (CH) is significant as a part of the WSN’s optimization in the context of energy consumption. In WSNs, the nodes operate on a very limited energy source, therefore, the routing protocols designed must meet the optimal utilization of energy consumption in such networks. Evolutionary games can be designed to meet this aspect by providing an adequately efficient CH selection mechanism. In such types of mechanisms, the network nodes are considered intelligent and independent to select their own strategies. However, the existing mechanisms do not consider a combination of many possible parameters associated with the smart nodes in WSNs, such as remaining energy, selfishness, hop-level, density, and degree of connectivity. In our work, we designed an evolutionary game-based approach for CH selection, combined with some vital parameters associated with sensor nodes and the entire networks. The nodes are assumed to be smart, therefore, the aspect of being selfish is also addressed in this work. The simulation results indicate that our work performs much better than typical evolutionary game-based approaches.


Wireless Sensor Networks consist of independent sensor nodes attached to one base station. In wireless sensor networks, nodes are connected to sensing environment and communicate the data to the base station. As WSNs continues to grow, they become vulnerable to attacks and hence the need for operative security techniques. Applications of wireless sensor networks demands for the well-organized and secure communication. For the solution of well-organized and reliable security, we need cryptography algorithms which provide good solutions. For providing reliable security techniques mainly data confidentiality, key management is used. Identification of suitable cryptographic techniques for WSNs is an important challenge due to limitation of energy, computation capability and memory of the sensor nodes. Symmetric cryptography techniques do not act well when the number of sensor nodes increases. Hence asymmetric key cryptographic techniques are widely used. Here we propose an electronic logic gate based symmetric Cryptographic technique which is more suitable for small and medium WSNs.


2021 ◽  
Vol 11 (22) ◽  
pp. 10924
Author(s):  
Fatma H. Elfouly ◽  
Rabie A. Ramadan ◽  
Ahmed Y. Khedr ◽  
Ahmad Taher Azar ◽  
Kusum Yadav ◽  
...  

 Wireless Sensor Networks (WSNs) became essential in developing many applications, including smart cities and Internet of Things (IoT) applications. WSN has been used in many critical applications such as healthcare, military, and transportation. Such applications depend mainly on the performance of the deployed sensor nodes. Therefore, the deployment process has to be perfectly arranged. However, the deployment process for a WSN is challenging due to many of the constraints to be taken into consideration. For instance, mobile nodes are already utilized in many applications, and their localization needs to be considered during the deployment process. Besides, heterogeneous nodes are employed in many recent applications due to their efficiency and cost-effectiveness. Moreover, the development areas might have different properties due to their importance. Those parameters increase the deployment complexity and make it hard to reach the best deployment scheme. This work, therefore, seeks to discover the best deployment plan for a WSN, considering these limitations throughout the deployment process. First, the deployment problem is defined as an optimization problem and mathematically formulated using Integer Linear Programming (ILP) to understand the problem better. The main objective function is to maximize the coverage of a given field with a network lifetime constraint. Nodes’ mobility and heterogeneity are added to the deployment constraints. The importance of the monitored field subareas is also introduced in this paper, where some subareas could have more importance than others. The paper utilizes Swarm Intelligence as a heuristic algorithm for the large-scale deployment problem. Simulation experiments show that the proposed algorithm produces efficient deployment schemes with a high coverage rate and minimum energy consumption compared to some recent algorithms. The proposed algorithm shows more than a 30% improvement in coverage and network lifetime. 


2021 ◽  
Author(s):  
Shikhar Suryavansh ◽  
Abu Benna ◽  
Chris Guest ◽  
Somali Chaterji

Abstract Data transmission accounts for significant energy consumption in wireless sensor networks where streaming data is generated by the sensors. This impedes their use in many settings, including livestock monitoring over large pastures (which forms our target application). We present Ambrosia, a lightweight protocol that utilizes a window-based timeseries forecasting mechanism for data reduction. Ambrosia employs a configurable error threshold to ensure that the accuracy of end applications is unaffected by the data transfer reduction. Experimental evaluations using LoRa and BLE on a real livestock monitoring deployment demonstrate 60% reduction in data transmission and a 2X increase in battery lifetime.


Sign in / Sign up

Export Citation Format

Share Document