scholarly journals Multi-Resonating UWB Printed Monopole Antenna

The multi-resonating, Annular Ring with Diamond Patch UWB Antenna has been presented, that produces large bandwidth. This configuration shows the bandwidth for VSWR = 2, or for corresponding S11 of 1.4GHz - 11 GHz, which includes UWB. This proposed configuration shows, approximately, Omni-directional radiation pattern on azimuthal plane for the entire range of frequency band. The measured and simulated results are shown; they promise for agreeable similarity. The impedance bandwidth ratio for presented antenna is achieved better than 7.85: 1 for S11< -9.6 dB. This antenna combines two resonators, i.e. annular ring and diamond shaped patch, within FR4 substrate of dimension 80mm x 80mm. This low profile compact antenna can be very useful for many embedded systems.

Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Mohammad Jakir Hossain ◽  
Mohammad Rashed Iqbal Faruque ◽  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Md. Atiqur Rahman

AbstractIn this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1–12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.


2019 ◽  
Vol 11 (7) ◽  
pp. 694-702
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

AbstractA low profile super-wideband polarization diversity printed monopole antenna with dual band-notched characteristics is presented the first time. The designed antenna comprises two arched shaped radiating elements with two triangular tapered microstrip feed lines (TTMFL) and two arched shaped partial ground planes, which covers an enormously wide impedance bandwidth (BW) from 1.2 to 25 GHz (ratio BW of 20.8:3) for reflection coefficient |S11| < −10 dB. To ensure the high port isolation (better than − 30 dB) between two feeding ports over the whole bands, two analogous antennas have been kept perpendicular to each other at a distance of 1 mm. In addition, the dual band-notched performance in wireless local area network (5–6 GHz) and X-band (7.2–8.5 GHz) is generated by employing a pair of open-circuited stubs (L-shaped stub and horizontal stub) to the TTMFL. Envelop correlation coefficient has been computed to study the polarization diversity performance. Finally, the proposed antenna was fabricated and tested successfully. Measured results indicate that the proposed antenna is an appropriate candidate for the polarization diversity applications. The proposed antenna has a compact size of 40 × 70 × 0.787 mm3, high isolation, and occupies a small space compared with the existing antennas.


2015 ◽  
Vol 8 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
Sudeep Baudha ◽  
Dinesh Kumar Vishwakarma

This paper presents a compact broadband printed monopole antenna with U-shaped slit in the partial ground plane and rectangular parasitic patches adjacent to the microstrip line for multiple applications. The optimal dimensions of the proposed antenna are 35 × 25 × 1.5 mm3 and is fabricated on commercially available low-cost FR4 substrate with εr = 4.3 and 0.025 loss tangent. Due to introduction of rectangular parasitic patches and U-shaped slit large bandwidth has been achieved. The impedance bandwidth (return loss, magnitude of S11 < 10 dB) of the proposed antenna is 139% (2.9–16.3 GHz). The proposed antenna covers ultra wide band applications, 5.2/5.8 GHz WLAN bands, 3.5/5.5 GHz WiMAX bands, X band (8–12 GHz), satellite communication, and other wireless communication services. The study shows that there is good agreement in simulated and measured results. Nearly stable radiation patterns have been obtained throughout the operating band. Antenna results and details are discussed and elaborated.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2552 ◽  
Author(s):  
Ran Fang ◽  
Rongguo Song ◽  
Xin Zhao ◽  
Zhe Wang ◽  
Wei Qian ◽  
...  

In this article, a graphene-assembled film (GAF)-based compact and low-profile ultra-wide bandwidth (UWB) antenna is presented and tested for wearable applications. The highly conductive GAFs (~106 S/m) together with the flexible ceramic substrate ensure the flexibility and robustness of the antenna, which are two main challenges in designing wearable antennas. Two H-shaped slots are introduced on a coplanar-waveguide (CPW) feeding structure to adjust the current distribution and thus improve the antenna bandwidth. The compact GAF antenna with dimensions of 32 × 52 × 0.28 mm3 provides an impedance bandwidth of 60% (4.3–8.0 GHz) in simulation. The UWB characteristics are further confirmed by on-body measurements and show a bending insensitive bandwidth of ~67% (4.1–8.0 GHz), with the maximum gain at 7.45 GHz being 3.9 dBi and 4.1 dBi in its flat state and bent state, respectively. Our results suggest that the proposed antenna functions properly in close proximity to a human body and can sustain repetitive bending, which make it well suited for applications in wearable devices.


Author(s):  
Nabilah Ripin ◽  
Ahmad Asari Sulaiman ◽  
Nur Emileen Abd Rashid ◽  
Mohamad Fahmi Hussin ◽  
Nor Najwa Ismail

<p>A slotted meander line printed monopole antenna for low frequency applications at 878 MHz is presented. The operating frequency of the conventional printed monopole antenna was greatly reduced by the presence of the slots and meander line which lead to the reduction of the antenna size. The size reduction up to 70% compared to the conventional reference antenna is achieved in this study. The antenna has a simple structure and small antenna size of 46.8 mm x 74 mm or 0.137𝝀<sub>0</sub> x 0.217𝝀<sub>0</sub>. The antenna has been fabricated on the low-cost FR4 substrate and measured to validate the simulation performances. Measured results display that the proposed antenna produces omnidirectional radiation pattern of impedance bandwidth of 48.83 MHz and the maximum gain of -1.18 dBi.</p>


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
X. L. Bao ◽  
M. J. Ammann

A novel printed monopole antenna employing a slotted-plate, which is electromagnetically coupled to the microstrip-fed planar element, is proposed to provide notch-frequency function. This technique enables stopband characteristics with improved control, compared to placing the slot in the microstrip-fed element. A detailed investigation of the rejectband properties has been made for the UWB antenna. Measured data for the optimized case show the 10 dB return loss bandwidth to be 9.8 GHz (from 2.80 GHz to 12.60 GHz) with a notchband frequency from 5.15 GHz to 5.825 GHz. Propagation measurements indicate that the electromagnetically coupled slot provides a greater reduction in stopband gain for the three principal planes, compared to placing the slot in the fed element. This is desirable to mitigate interference from WLAN systems. A full parametric study of the antenna is presented.


2020 ◽  
Vol 70 (2) ◽  
pp. 175-182
Author(s):  
Prithish Chand ◽  
Amar Dattatray Chaudhari ◽  
Rahul Keley ◽  
Kamala Prasan Ray

In this paper, a simple, low profile compact printed monopole antenna has been proposed for satellite based automatic identification system (SB-AIS). The design consists of a printed monopole, which has been meandered to achieve optimum size reduction. The detailed investigation in terms of bending of the arms of monopole, width of the patch and dimensions of the ground plane on the resonance frequency and input impedance is presented. The antenna is matched to a typical 50 Ω coaxial line without any requirement of external matching structures. The prototype of the antenna is fabricated and tested at an operating frequency of 161 MHz for SB-AIS, with compact size of 44.5 . 17 cm2. The measured results show that the antenna has a bandwidth of 15 MHz (9.3 per cent), gain of 1.87 dBi and beam-width of 82° in the elevation and omnidirectional in azimuthal plane. The size reduction is 53.8 per cent as compared to a linear printed monopole antenna.


2021 ◽  
Author(s):  
Saida Ibnyaich ◽  
Samira Chabaa ◽  
Layla wakrim ◽  
Abdessalam El Yassini ◽  
Abdelouhab Zeroual ◽  
...  

Abstract A new compact pentagonal microstrip patch antenna with slotted ground plane structure, developed for use in ultrawideband applications, is studied in this article. The proposed antenna is mainly constituted by a pentagonal shaped patch antenna, a defected ground plane structure, two stubs, and four slots to improve the bandwidth. The designed antenna has an overall dimension of 30×17.59×1.6mm 3 , for WIMAX /WLAN/ WiFi/HIPERLAN-2 /Bluetooth /LTE /5G applications with a very large bandwidth starting from 2.66 GHz to 10.82 GHz (S 11 <-6 dB ). A parametric study of the ground plane structure was carried out to find the final and the optimal UWB antenna, and to confirm that the antenna has good performance and broader bandwidth. The proposed antenna prototype has been fabricated. The measured results indicate that the antenna has a good impedance matching. The antenna has an electrically small dimension with a good gain, a notable efficiency, and a wide impedance bandwidth, which makes this antenna an excellent candidate for ultrawideband wireless communication, microwave imaging, radar applications, and the major part of the mobile phone frequencies as well.


2022 ◽  
Vol 12 (2) ◽  
pp. 821
Author(s):  
Sarosh Ahmad ◽  
Umer Ijaz ◽  
Salman Naseer ◽  
Adnan Ghaffar ◽  
Muhammad Awais Qasim ◽  
...  

A type of telecommunication technology called an ultra-wideband (UWB) is used to provide a typical solution for short-range wireless communication due to large bandwidth and low power consumption in transmission and reception. Printed monopole antennas are considered as a preferred platform for implementing this technology because of its alluring characteristics such as light weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a compact-sized ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency is presented in this article. Computer simulation technology microwave studio (CSTMWS) software is used to build and analyze the proposed antenna design technique. This broadband printed monopole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm, suitable for wireless communication system. The designed UWB antenna works with maximum gain (peak gain of 4.1 dB) across the whole UWB spectrum of 3–11 GHz. The results are simulated, measured, and debated in detail. Different parametric studies based on numerical simulations are involved to arrive at the optimal design through monitoring the effects of adding cuts on the performance of the proposed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna bandwidth with relatively best gain. The proposed patch antenna shape is like a jug with a handle that offers greater bandwidth, good gain, higher efficiency, and compact size.


Sign in / Sign up

Export Citation Format

Share Document