scholarly journals Influence of Anchor Connector Stiffness on Displacement-Internal Force of Steel-Concrete Frame

2019 ◽  
Vol 8 (2) ◽  
pp. 3614-3619

In the article, the author introduces how to determine the equivalent hardness of steel-concrete composite beam element, stiffness matrix and nodal load vector of steel-concrete beam element. Thereby, to build and solve the problem of analyzing the structural steel frame of concrete considering the anchor stiffness, programming and clarifying the impact of anchor stiffness associated with displacement - internal force of the frame

2013 ◽  
Vol 834-836 ◽  
pp. 1337-1342
Author(s):  
Hua Hu Cheng ◽  
Ai Min Li ◽  
Ming Wen Guan ◽  
Xian Wei Yang ◽  
Jing Luo

Took two layers of single span lateral sway semi-rigid connecting steel frame to bear vertical load function as the research object, adopting finite element method for solving the bucking load of the whole losing the stability of the semi-rigid connecting steel frame. Using based on the energy method and the three parabolic interpolation deflection curve function to obtain the relationship between the both element ends of internal force and displacement and introducing semi-rigid beam element stiffness matrix and geometric stiffness matrix of element integrate the global stiffness matrix which contains the flexibility of the connections and the component geometry nonlinear, thus deducing the stability characteristic equation of semi-rigid steel frame. And the MATLAB language composition program is applied to calculate the buckling load of overall losing stability of the semi-rigid steel frame, thus obtaining the buckling load of semi-rigid steel frame. The method is a very effective numerical calculating method which can solve the stability problems of relatively complicated stress conditions or relatively complicated structure composition conditions and it can also satisfy the requirement of higher calculation accuracy, easy for programming and calculation and of great practicability.


2011 ◽  
Vol 368-373 ◽  
pp. 3106-3112
Author(s):  
Wei Shuo Wang ◽  
Guang Jian Bao

A space beam element is derived for geometrically nonlinear analysis based on the principle of minimum potential energy principle. The impact of high-order nonlinear is considered by introducing the axial deformation into the stiffness matrix. The large displacement matrix is divided into four and the initial stress matrix into three submatrix


2011 ◽  
Vol 243-249 ◽  
pp. 1625-1628
Author(s):  
Wa Li Song ◽  
Bo Liu ◽  
Hong Kui Yue

The test beams were overloaded 20 times repeatedly with different amplitude, and they damaged to different extent to simulate actual cracking. Strengthening the pre-damaged beams with steel plates, working situation of structure strengthened is analyzed. For the test beams strengthened, steel plates and the original structure deform harmoniously, internal force is allocated to the steel plates and the original structure with a certain proportion. In the serviceability limit state, the method of allocation of internal force is studied, and the impact of the overload amplitude, reinforcement ratio on the allocation proportion is analyzed.


2011 ◽  
Vol 255-260 ◽  
pp. 1954-1958
Author(s):  
Ling Yuan Zhou ◽  
Qiao Li

A efficient 3D reinforced-concrete beam element based on the flexibility method and distributed nonlinearity theory is proposed, The sections of the beam element are divided into the plane isoparametric elements in this formulation, the section stiffness matrices are calculated through the integration of stress-strain relations of concrete including reinforcing steel effect in the section. The flexibility matrices of the sections are calculated by inverting the stiffness matrices, and the element flexibility matrix is formed through the force interpolation functions. The element stiffness matrix is evaluated through the element flexibility matrix. Finally, the buckling behaviors of a reinforced concrete beam under various eccentric loads are analyzed with the proposed formulation to illustrate its accuracy and computational efficiency.


2012 ◽  
Vol 446-449 ◽  
pp. 283-287 ◽  
Author(s):  
Ying Yu ◽  
Yao Zhi Luo

This paper presents the large deflection analysis of 3D steel frame using the Finite Particle Method (FPM). The FPM based on the vector mechanics discretizes the analyzed domain with finite particles whose motions are described by Newton’s second law. Instead of imposing a global equilibrium of the entire continuous system, FPM enforces equilibrium on each particle. One of the features of this approach is that no iterations to follow nonlinear laws are necessary, and no global matrices are formed or solved in this method. This paper provides the fundamentals of the FPM, including the structural discretization and particle motion equation. Then internal force formulations of 3D beam element are derived using the fictitious motion method. Two typical numerical examples are given to show the capability of the FPM in the large deflection analysis of 3D steel frame.


2021 ◽  
Vol 19 (6) ◽  
pp. 2483-2504
Author(s):  
Luigi Di Sarno ◽  
Jing-Ren Wu

AbstractThis paper presents the fragility assessment of non-seismically designed steel moment frames with masonry infills. The assessment considered the effects of multiple earthquakes on the damage accumulation of steel frames, which is an essential part of modern performance-based earthquake engineering. Effects of aftershocks are particularly important when examining damaged buildings and making post-quake decisions, such as tagging and retrofit strategy. The procedure proposed in the present work includes two phase assessment, which is based on incremental dynamic analyses of two refined numerical models of the case-study steel frame, i.e. with and without masonry infills, and utilises mainshock-aftershock sequences of natural earthquake records. The first phase focuses on the undamaged structure subjected to single and multiple earthquakes; the effects of masonry infills on the seismic vulnerability of the steel frame were also considered. In the second phase, aftershock fragility curves were derived to investigate the seismic vulnerability of infilled steel frames with post-mainshock damage caused by mainshocks. Comparative analyses were conducted among the mainshock-damaged structures considering three post-mainshock damage levels, including no damage. The impact of aftershocks was then discussed for each mainshock-damage level in terms of the breakpoint that marks the onset of exceeding post-mainshock damage level, as well as the probability of exceeding of superior damage level due to more significant aftershocks. The evaluation of the efficiency of commonly used intensity measures of aftershocks was also carried out as part of the second phase of assessment.


2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


2012 ◽  
Vol 28 (1) ◽  
pp. 97-106 ◽  
Author(s):  
J. D. Yau ◽  
S.-R. Kuo

ABSTRACTUsing conventional virtual work method to derive geometric stiffness of a thin-walled beam element, researchers usually have to deal with nonlinear strains with high order terms and the induced moments caused by cross sectional stress results under rotations. To simplify the laborious procedure, this study decomposes an I-beam element into three narrow beam components in conjunction with geometrical hypothesis of rigid cross section. Then let us adopt Yanget al.'s simplified geometric stiffness matrix [kg]12×12of a rigid beam element as the basis of geometric stiffness of a narrow beam element. Finally, we can use rigid beam assemblage and stiffness transformation procedure to derivate the geometric stiffness matrix [kg]14×14of an I-beam element, in which two nodal warping deformations are included. From the derived [kg]14×14matrix, it can take into account the nature of various rotational moments, such as semi-tangential (ST) property for St. Venant torque and quasi-tangential (QT) property for both bending moment and warping torque. The applicability of the proposed [kg]14×14matrix to buckling problem and geometric nonlinear analysis of loaded I-shaped beam structures will be verified and compared with the results presented in existing literatures. Moreover, the post-buckling behavior of a centrally-load web-tapered I-beam with warping restraints will be investigated as well.


Sign in / Sign up

Export Citation Format

Share Document