scholarly journals Steady State Simulation of Plastic Pyrolysis Process using Aspen Hysys V9 Simulator

2019 ◽  
Vol 8 (4) ◽  
pp. 2206-2211 ◽  

The present study was carrying out the simulation of plastic pyrolysis process modelled for the conversion of petroleum product from plastic wastes such as Poly-Styrene (PS), PolyEthylene (PE), Poly-Propylene (PP) and Poly-Styrene (PS) with the aid of Aspen Hysys V9 simulator. Aspen Hysys simulator was used to develop the steady state model and to simulate the pyrolysis process with the above mentioned plastic wastes. PengRobinson thermodynamics model was employed as a fluid package of this simulation. The process converts waste plastic to fuel, which was taking places in two stages in an Aspen Hysys Simulation Environment such as i) A conversion of plastic wastes into Vapour-Liquid Fraction (VLF) with small quantity of char residue using conversion reactor (Pyrolytic Reactor) and ii) Separation of produced Vapour-Liquid Fraction to pyro gases and liquid fuel with the help of water tube Condenser. The obtained results demonstrated that, a conversion of Poly-Styrene (PS) into liquid fuel is up to 88.7% was optimum than other plastics Poly-Ethylene (PE) 81.95% and Poly-Propylene (PP) 83.54 %. The simulated model can help an interested to researcher in knowing expected products and their individual component for better understanding and scale-up studies.

2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Kanubhai Parmar ◽  
Sukanta Dash ◽  
Sunil Patil ◽  
Garimella Padmavathi

AbstractAt condensate stripper of a cracker plant with design control philosophy for composition control pant was facing operational difficulty. Due to disturbance in operating parameter column was becoming unstable and product was getting offspec w.r.t. desired purity. One of the applications of dynamic simulation is to troubleshoot the challenges related to control philosophy in practical application. Since steady-state simulation models cannot predict behavior with respect to time, initially steady state model and finally a dynamic model was developed in Aspen HYSYS. The model is used to study the process behavior for existing control philosophy and proposed philosophy. To avoid column puncture and without waiting for plant shut down the existing Temperature Indicator (TI) considered as Temperature Indicator Controller (TIC) for the study. A new control philosophy was developed based on the response of variables after disturbances in feed rate and composition. The revised control philosophy has been implemented and is now working satisfactorily, providing stabilized operation of the column with consistent bottom product quality. This has helped to reduce the loss of C2s in the bottom stream by about 700 ppm, for savings of about $100,000 USD per year.


2014 ◽  
Vol 925 ◽  
pp. 359-363
Author(s):  
Ibraheem J. Ibraheem ◽  
Tareg A. Mandeel ◽  
A.D. Faisal ◽  
Y. Al-Douri

Two different vacuum thermal degradation processes of plastic wastes materials: Poly Propylene (PP) and Low Density Poly Ethylene (LDPE) were conducted with homemade thermal degradation setup. The two processes were used 1-bulk metal particles,2-metal oxides (Fe,Ni,Fe2O3,NiO) and 3-metal nanoparticles (Fe and Ni) as a catalysts supported on feldspar clay respectively. The experimental results for both processes shows the presence of different products like liquid, wax, gas, and carbon. Our characterization was focused on the liquid product. The produced liquid was characterized by Fourier transform infra-red (FTIR) and Gas chromatography (GC) The octane number, cetane number, flash point, fire point, aniline point and some physical properties were also measured. The results indicated that the process with metal nanoparticles catalyst produces liquid much better properties compared to the other materials results used metal particles catalyst.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pouria Fattahi ◽  
Ali Rahimian ◽  
Michael Q. Slama ◽  
Kihak Gwon ◽  
Alan M. Gonzalez-Suarez ◽  
...  

AbstractCellular therapies based on human pluripotent stem cells (hPSCs) offer considerable promise for treating numerous diseases including diabetes and end stage liver failure. Stem cell spheroids may be cultured in stirred bioreactors to scale up cell production to cell numbers relevant for use in humans. Despite significant progress in bioreactor culture of stem cells, areas for improvement remain. In this study, we demonstrate that microfluidic encapsulation of hPSCs and formation of spheroids. A co-axial droplet microfluidic device was used to fabricate 400 μm diameter capsules with a poly(ethylene glycol) hydrogel shell and an aqueous core. Spheroid formation was demonstrated for three hPSC lines to highlight broad utility of this encapsulation technology. In-capsule differentiation of stem cell spheroids into pancreatic β-cells in suspension culture was also demonstrated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1362
Author(s):  
Joao Augusto Oshiro ◽  
Angelo Lusuardi ◽  
Elena M. Beamud ◽  
Leila Aparecida Chiavacci ◽  
M. Teresa Cuberes

Ureasil-Poly(ethylene oxide) (ureasil-PEO500) and ureasil-Poly(propylene oxide) (u-PPO400) films, unloaded and loaded with dexamethasone acetate (DMA), have been investigated by carrying out atomic force microscopy (AFM), ultrasonic force microscopy (UFM), contact-angle, and drug release experiments. In addition, X-ray diffraction, small angle X-ray scattering, and infrared spectroscopy have provided essential information to understand the films’ structural organization. Our results reveal that while in u-PEO500 DMA occupies sites near the ether oxygen and remains absent from the film surface, in u-PPO400 new crystalline phases are formed when DMA is loaded, which show up as ~30–100 nm in diameter rounded clusters aligned along a well-defined direction, presumably related to the one defined by the characteristic polymer ropes distinguished on the surface of the unloaded u-POP film; occasionally, larger needle-shaped DMA crystals are also observed. UFM reveals that in the unloaded u-PPO matrix the polymer ropes are made up of strands, which in turn consist of aligned ~180 nm in diameter stiffer rounded clusters possibly formed by siloxane-node aggregates; the new crystalline phases may grow in-between the strands when the drug is loaded. The results illustrate the potential of AFM-based procedures, in combination with additional physico-chemical techniques, to picture the nanostructural arrangements in polymer matrices intended for drug delivery.


Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed for unsteady periodic breathing conditions, using large-scale models of the human lung airway. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to G16) obtained from a stochastically generated airway tree with statistically realistic geometrical characteristics. A reduced-order geometry was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to G16. The inlet and outlet flow boundaries corresponded to the oronasal opening (superior), the inlet/outlet planes in terminal bronchioles (distal), and the unresolved airway boundaries arising from the truncation procedure (intermediate). The cyclic flow was specified according to the predicted ventilation patterns for a healthy adult male at three different activity levels, supplied by the whole-body modeling software HumMod. The CFD simulations were performed using Ansys FLUENT. The mass flow distribution at the distal boundaries was prescribed using a previously documented methodology, in which the percentage of the total flow for each boundary was first determined from a steady-state simulation with an applied flow rate equal to the average during the inhalation phase of the breathing cycle. The distal pressure boundary conditions for the steady-state simulation were set using a stochastic coupling procedure to ensure physiologically realistic flow conditions. The results show that: 1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; 2) the predicted alveolar pressure is in good agreement with previously documented values; and 3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document