scholarly journals The Impact of PV Power Plants Implementation on Electricity Cost and Shadow Price Minimization

The increase reliance on competitive electricity market has led to widespread research to reallocate energy sources and minimize the price of energy and the services related to it. The main issues that faces the design of any energy market, is thehigh cost of generation and the high shadow pricesthat highly impacts the consumers.Also,achieving the supply-demand balance and minimization of the transmission congestion is a vital goal while planning. In this paper, a transparent and open competitive market is attained. In order to control the electricity market and reduce the market clearing price, this study proposed introducing renewable energy power plants which has lower electricity generation cost in comparison with the conventional power plants.Minimization of the shadow price is achieved by dividing the electricity grid into multiple regions. Every region has a different shadow price depending on the load demand and the power plants available to supply the demand at this region. Where,the market clearing price of each region is set as the price of generation of the highest power plant sharing in supplying the load demand at this region. This methodology is applied on the Egyptian unified power network.Sizing and allocation of the renewable energy power plantsis studied carefully from the technical and economical point of view to maximize the benefit and minimize the overall cost function and shadow price

Energetika ◽  
2018 ◽  
Vol 63 (4) ◽  
Author(s):  
Polina Ivanova ◽  
Ervin Grebesh ◽  
Anna Mutule ◽  
Olegs Linkevics

The implementation of the market mechanism, which includes electricity price fluctuation, and a wide integration of intermittent generation, namely solar PV and wind energy, in energy production have changed the role and operation manner of conventional generation. It is partly or not at all adapted to new running conditions. Therefore, the efficiency and flexibility of conventional generation has to be improved. The numerical approach is developed in the context of combined cycle gas turbine (CCGT) technology to adapt its running conditions to the electricity market mechanism. The developed approach was verified on a case study of the Baltic States (Latvia) examples in a multi-paradigm numerical computing environment MATLab. The obtained results show that the added profit is gained through production of supplementary electricity, and the impact of cycling operation is reduced through the decrease of cycling operation ranges numbers and the substitution of start-up with a less adverse one from a technical and economical point of view. The developed approach can be adapted to various technologies and situations by adding appropriate characteristics and constraints of technology.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3860
Author(s):  
Priyanka Shinde ◽  
Ioannis Boukas ◽  
David Radu ◽  
Miguel Manuel de Manuel de Villena ◽  
Mikael Amelin

In recent years, the vast penetration of renewable energy sources has introduced a large degree of uncertainty into the power system, thus leading to increased trading activity in the continuous intra-day electricity market. In this paper, we propose an agent-based modeling framework to analyze the behavior and the interactions between renewable energy sources, consumers and thermal power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel adaptive trading strategy that can be used by the agents that participate in CID market. The agents learn how to adapt their behavior according to the arrival of new information and how to react to changing market conditions by updating their willingness to trade. A comparative analysis was performed to study the behavior of agents when they adopt the proposed strategy as opposed to other benchmark strategies. The effects of unexpected outages and information asymmetry on the market evolution and the market liquidity were also investigated.


2021 ◽  
Vol 12 (3) ◽  
pp. 631
Author(s):  
Sergey BESPALYY

The growth of renewable energy sources (RES) shows the desire of the government of Kazakhstan to meet challenges that affect the welfare and development of the state. National targets, government programs, policies influence renewable energy strategies. In the future, renewable energy technologies will act as sources of a green economy and sustainable economic growth. The state policy in the field of energy in Kazakhstan is aimed at improving the conditions for the development and support of renewable energy sources, amendments are being made to provide for the holding of auctions for new RES projects, which replaces the previously existing system of fixed tariffs. It is expected that the costs of traditional power plants for the purchase of renewable energy will skyrocket, provided that the goals in the field of renewable generation are achieved. This article provides an assessment of international experience in supporting renewable energy sources, as well as analyzes the current situation in the development of renewable energy in Kazakhstan and the impact on sustainable development and popularization of the «green» economy. The study shows that by supporting the development of renewable energy sources, economic growth is possible, which is achieved in an environmentally sustainable way.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


2020 ◽  
Vol 184 ◽  
pp. 01070
Author(s):  
Ayani Nandi ◽  
Vikram Kumar Kamboj

Daily load demand for industrial, residential and commercial sectors are changing day by day. Also, inclusion of e-mobility has totally effected the operations of realistic power sector. Hence, to meet this time varying load demand with minimum production cost is very challenging. The proposed research work focuses on the mathematical formulation of profit based unit commitment problem of realistic power system considering the impact of battery electric vehicles, hybrid electric vehicles and plug in electric vehicles and its solution using Intensify Harris Hawks Optimizer (IHHO). The coordination of plants with each other is named as Unit commitment of plants in which the most economical patterns of the generating station is taken so as to gain low production cost with higher reliability. But with the increase in industrialization has affected the environment badly so to maintain the balance between the generation and environment a new thinking of generating low cost power with high reliability by causing less harm to environment i.e. less emission of flue gases is adopted by considering renewable energy sources.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3310 ◽  
Author(s):  
Ignacio Blanco ◽  
Daniela Guericke ◽  
Anders Andersen ◽  
Henrik Madsen

In countries with an extended use of district heating (DH), the integrated operation of DH and power systems can increase the flexibility of the power system, achieving a higher integration of renewable energy sources (RES). DH operators can not only provide flexibility to the power system by acting on the electricity market, but also profit from the situation to lower the overall system cost. However, the operational planning and bidding includes several uncertain components at the time of planning: electricity prices as well as heat and power production from RES. In this publication, we propose a planning method based on stochastic programming that supports DH operators by scheduling the production and creating bids for the day-ahead and balancing electricity markets. We apply our solution approach to a real case study in Denmark and perform an extensive analysis of the production and trading behavior of the DH system. The analysis provides insights on system costs, how DH system can provide regulating power, and the impact of RES on the planning.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


Author(s):  
Jiang-Jiang Wang ◽  
You-Yin Jing ◽  
Jun-Hong Zhao

The feasibility evaluation of renewable energy power plants from multi criteria is necessary to save energy, protect environment and develop technology. This paper employs the improved elimination et choice translating reality (ELECTRE) method to evaluate 10 kinds of energy power plants in five criteria. The plants includes the coal fired, solar-thermal, geothermal, biomass, nuclear, photovoltaic solar, wind, ocean, hydro and natural gas combined cycle power plants. The evaluation criteria reflects four aspects from the technology, economy, environment and society. The concrete criteria are efficiency, installation, electricity cost, CO2 emission, and land requirement. Finally, the multi criteria evaluations show that the hydro power plant in the renewable energy are the optimal schemes at present.


Sign in / Sign up

Export Citation Format

Share Document