scholarly journals A Multi-Attribute Trust-based Authentication Model for Internet of Things based Military Environment

2020 ◽  
Vol 8 (6) ◽  
pp. 2459-2465

The Internet of Things (IoT) is an emerging field where physical objects are connected over the network, by the way, to make human life easy and more comfortable. The IoT environment is involved with various devices and those are working together to attain a common goal. The enhanced technology of IoT enables the military environment to work on it. Typically, most of the IoT devices are restricted in terms of their storage, process, compute and network capability. Hence, those devices are easy to attack and compromise. Compromised devices become behave as blackhole attacks. To assure the proper network function, we are in the situation to overcome those types of attacks. As trust plays a vital role in decision making, in this paper we proposed a Multi-attribute Trust-based Authentication mechanism (MTA). The ultimate aim of this model is to ensure authentication among the participating devices by identifying black hole nodes in the network. This multi-attribute trust calculation approach provides a maximum effort to evaluating the trustworthiness of devices. The simulation results show the applicability of the proposed model in terms of various performance metrics.

2021 ◽  
Vol 5 (1) ◽  
pp. 28-39
Author(s):  
Minami Yoda ◽  
Shuji Sakuraba ◽  
Yuichi Sei ◽  
Yasuyuki Tahara ◽  
Akihiko Ohsuga

Internet of Things (IoT) for smart homes enhances convenience; however, it also introduces the risk of the leakage of private data. TOP10 IoT of OWASP 2018 shows that the first vulnerability is ”Weak, easy to predict, or embedded passwords.” This problem poses a risk because a user can not fix, change, or detect a password if it is embedded in firmware because only the developer of the firmware can control an update. In this study, we propose a lightweight method to detect the hardcoded username and password in IoT devices using a static analysis called Socket Search and String Search to protect from first vulnerability from 2018 OWASP TOP 10 for the IoT device. The hardcoded login information can be obtained by comparing the user input with strcmp or strncmp. Previous studies analyzed the symbols of strcmp or strncmp to detect the hardcoded login information. However, those studies required a lot of time because of the usage of complicated algorithms such as symbolic execution. To develop a lightweight algorithm, we focus on a network function, such as the socket symbol in firmware, because the IoT device is compromised when it is invaded by someone via the Internet. We propose two methods to detect the hardcoded login information: string search and socket search. In string search, the algorithm finds a function that uses the strcmp or strncmp symbol. In socket search, the algorithm finds a function that is referenced by the socket symbol. In this experiment, we measured the ability of our proposed method by searching six firmware in the real world that has a backdoor. We ran three methods: string search, socket search, and whole search to compare the two methods. As a result, all methods found login information from five of six firmware and one unexpected password. Our method reduces the analysis time. The whole search generally takes 38 mins to complete, but our methods finish the search in 4-6 min.


Author(s):  
K. Dinesh Kumar ◽  
Venkata Rathnam T. ◽  
Venkata Ramana R. ◽  
M. Sudhakara ◽  
Ravi Kumar Poluru

Internet of things (IoT) technology plays a vital role in the current technologies because IoT develops a network by integrating different kinds of objects and sensors to create the communication among objects directly without human interaction. With the presence of internet of things technology in our daily comes smart thinking and various advantages. At the same time, secure systems have been a most important concern for the protection of information systems and networks. However, adopting traditional security management systems in the internet of things leads several issues due to the limited privacy and policies like privacy standards, protocol stacks, and authentication rules. Usually, IoT devices has limited network capacities, storage, and computing processors. So they are having more chances to attacks. Data security, privacy, and reliability are three main challenges in the IoT security domain. To address the solutions for the above issues, IoT technology has to provide advanced privacy and policies in this large incoming data source. Blockchain is one of the trending technologies in the privacy management to provide the security. So this chapter is focused on the blockchain technologies which can be able to solve several IoT security issues. This review mainly focused on the state-of-the-art IoT security issues and vulnerabilities by existing review works in the IoT security domains. The taxonomy is presented about security issues in the view of communication, architecture, and applications. Also presented are the challenges of IoT security management systems. The main aim of this chapter is to describe the importance of blockchain technology in IoT security systems. Finally, it highlights the future directions of blockchain technology roles in IoT systems, which can be helpful for further improvements.


Internet of Things (IoT) is efficiently plays vital role in development of several sectors by offering many opportunities to grow the economy and improve the life standard through connecting billions of “Things” which provides business opportunities in different sectors and encounter many technical and application challenges. This paper emphasizes the role of Dynamic bandwidth allocation and protocols standards in various IoT sectors such as healthcare, education, agriculture, industrial, transportation, smart cities etc., and focuses on the challenges in providing uninterrupted bandwidth to all IoT devices with existing infrastructure, which depends on standardized protocols and network devices to establish connection with heterogeneous IoT devices. This paper covers Enhanced Dynamic Bandwidth Techniques, protocol standards and policies in IoT network technologies to Improve QoS in IoT devices.


2019 ◽  
Vol 8 (3) ◽  
pp. 2295-2299

The smart management system plays a vital role in many domains and improves the reliability of protection and privacy of a system. Electrical systems have become a part in everyday human life. The next generation electrical systems will entirely depends on fully automated and smart control systems. In the present paper various mechanisms of cloud gateways and security issues are explored for smart management of an electrical system. The present survey work is reconnoitred with Internet of Things (IoT) in association with cloud. Cloud based IoT in smart electrical system provides potential enhancement of performance, management, and resilience of the smart system. However, the espousal of cloud based IoT system in smart electrical system to store and retrieve the data from cloud may increase risks in data privacy and security. Despite the different flaws in global integration of cloud with IoT through internet, various end-to-end security schemes are discussed to overcome these flaws. As a result in many of the applications easy IoT cloud gateway along with homomorphic encryption technique is set up to solve communication overheads and security issues.


internet of things is now everywhere and even if people are aware of it or not, it is part of our everyday life. For something that is so much in pace with our life, iot collects a lot of information about our day today life, which in case of a data leak or hijacking could lead to catastrophic effects in the society. Still iot devices are not manufactured keeping in mind the security factor. This paper dives into the problem of spoofing attacks dealt by iot devices and comes up with an authentication mechanism, which uses variants of elliptic curve cryptography to protect against such said attacks without exhausting the devices in case of computational power and storage area. The experimentation clearly revealed the strength of the scheme to mitigate spoofing attacks on the iot home networks.


Author(s):  
Shashwat Pathak ◽  
Shreyans Pathak

The recent decade has seen considerable changes in the way the technology interacts with human lives and almost all the aspects of life be it personal or professional has been touched by technology. Many smart devices have also started playing a vital role in many fields and domains and the internet of things (IoT) has been the harbinger of the advent of IoT devices. IoT devices have proven to be monumental in imparting ‘smartness' in the otherwise static machines. The ability of the devices to interact and transfer the data to the internet and ultimately to the end-user has revolutionized the technological world and has brought many seemingly disparate fields in the technological purview. Out of the many fields where IoT has started gaining momentum, one of the most important ones is the healthcare sector. Many wearable smart devices have been developed over time capable to transmit real-time data to hospitals and doctors. It is essential for tracking the progress of the critically ill patients and has opened the horizon for attending patients remotely using these smart devices.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 359
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.


2021 ◽  
Vol 13 (8) ◽  
pp. 210 ◽  
Author(s):  
Sheetal Ghorpade ◽  
Marco Zennaro ◽  
Bharat Chaudhari

With exponential growth in the deployment of Internet of Things (IoT) devices, many new innovative and real-life applications are being developed. IoT supports such applications with the help of resource-constrained fixed as well as mobile nodes. These nodes can be placed in anything from vehicles to the human body to smart homes to smart factories. Mobility of the nodes enhances the network coverage and connectivity. One of the crucial requirements in IoT systems is the accurate and fast localization of its nodes with high energy efficiency and low cost. The localization process has several challenges. These challenges keep changing depending on the location and movement of nodes such as outdoor, indoor, with or without obstacles and so on. The performance of localization techniques greatly depends on the scenarios and conditions from which the nodes are traversing. Precise localization of nodes is very much required in many unique applications. Although several localization techniques and algorithms are available, there are still many challenges for the precise and efficient localization of the nodes. This paper classifies and discusses various state-of-the-art techniques proposed for IoT node localization in detail. It includes the different approaches such as centralized, distributed, iterative, ranged based, range free, device-based, device-free and their subtypes. Furthermore, the different performance metrics that can be used for localization, comparison of the different techniques, some prominent applications in smart cities and future directions are also covered.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 752 ◽  
Author(s):  
Ye-Jin Choi ◽  
Hee-Jung Kang ◽  
Il-Gu Lee

The Internet of things (IoT) technology, which is currently considered the new growth engine of the fourth industrial revolution, affects our daily life and has been applied to various industrial fields. Studies on overcoming the limitations of scalability and stability in a centralized IoT operating environment by employing distributed blockchain technology have been actively conducted. However, the nature of IoT that ensures connectivity with multiple objects at any time and any place increases security threats. Further, it extends the influence of the cyber world into the physical domain, resulting in serious damage to human life and property. Therefore, we aim to study a method to increase the security of IoT devices and effectively extend them simultaneously. To this end, we analyze the authentication methods and limitations of traditional IoT devices and examine cases for improving IoT environments by using blockchain technology. Accordingly, we propose a framework that allows IoT devices to be securely connected and extended to other devices by automatically evaluating security using blockchain technology and the whitelist. The method proposed in this paper restricts the extension of devices vulnerable to security risks by imposing penalties and allows only devices with high security to be securely and quickly authenticated and extended without user intervention. In this study, we applied the proposed method to IoT network simulation environments and observed that the number of devices vulnerable to security was reduced by 48.5% compared with traditional IoT environments.


Author(s):  
Rupal Chaudhary

Abstract. The Internet of Things (IoT) is making a lot of buzz while it approaches changing our lives. IoT is all over the place, despite the fact that we don't generally observe it or realize that a gadget is a piece of the IoT. The IoT is transforming physical articles into a biological system of data shared between gadgets that are wearable, versatile, even implantable, making our lives innovation and information rich. IoT business applications are various. Keen machines are evolving when, where and how work is done in for all intents and purposes each industry; yet, I'm not catching it's meaning for reality? IoT is a remarkable system associating machines, people, information and forms and is presently sifting down to reality, molding how we approach our every day lives. Some true instances of IoT are wearable wellness and trackers (like Fitbits) and IoT social insurance applications, voice partners (Siri and Alexa), shrewd vehicles (Tesla), and keen machines (iRobot). With IoTs quick arrangement coming into contact with numerous IoT gadgets consistently will be unavoidable soon. In this paper we gathered the region on which the IoT gadgets will significantly affect numerous parts of our carries on with like in live, in drive, and in cultivating harvests and creatures.


Sign in / Sign up

Export Citation Format

Share Document