scholarly journals An Enhanced Methodology on Internet of Things with Cloud in Smart Electrical Systems

2019 ◽  
Vol 8 (3) ◽  
pp. 2295-2299

The smart management system plays a vital role in many domains and improves the reliability of protection and privacy of a system. Electrical systems have become a part in everyday human life. The next generation electrical systems will entirely depends on fully automated and smart control systems. In the present paper various mechanisms of cloud gateways and security issues are explored for smart management of an electrical system. The present survey work is reconnoitred with Internet of Things (IoT) in association with cloud. Cloud based IoT in smart electrical system provides potential enhancement of performance, management, and resilience of the smart system. However, the espousal of cloud based IoT system in smart electrical system to store and retrieve the data from cloud may increase risks in data privacy and security. Despite the different flaws in global integration of cloud with IoT through internet, various end-to-end security schemes are discussed to overcome these flaws. As a result in many of the applications easy IoT cloud gateway along with homomorphic encryption technique is set up to solve communication overheads and security issues.

Author(s):  
K. Dinesh Kumar ◽  
Venkata Rathnam T. ◽  
Venkata Ramana R. ◽  
M. Sudhakara ◽  
Ravi Kumar Poluru

Internet of things (IoT) technology plays a vital role in the current technologies because IoT develops a network by integrating different kinds of objects and sensors to create the communication among objects directly without human interaction. With the presence of internet of things technology in our daily comes smart thinking and various advantages. At the same time, secure systems have been a most important concern for the protection of information systems and networks. However, adopting traditional security management systems in the internet of things leads several issues due to the limited privacy and policies like privacy standards, protocol stacks, and authentication rules. Usually, IoT devices has limited network capacities, storage, and computing processors. So they are having more chances to attacks. Data security, privacy, and reliability are three main challenges in the IoT security domain. To address the solutions for the above issues, IoT technology has to provide advanced privacy and policies in this large incoming data source. Blockchain is one of the trending technologies in the privacy management to provide the security. So this chapter is focused on the blockchain technologies which can be able to solve several IoT security issues. This review mainly focused on the state-of-the-art IoT security issues and vulnerabilities by existing review works in the IoT security domains. The taxonomy is presented about security issues in the view of communication, architecture, and applications. Also presented are the challenges of IoT security management systems. The main aim of this chapter is to describe the importance of blockchain technology in IoT security systems. Finally, it highlights the future directions of blockchain technology roles in IoT systems, which can be helpful for further improvements.


Subject IoT ecosystem. Significance The market for the Internet of Things (IoT) or connected devices is expanding rapidly, with no manufacturer currently forecast to dominate the supply chain. This has fragmented the emerging IoT ecosystem, triggering questions about interoperability and cybersecurity of IoT devices. Impacts Firms in manufacturing, transportation and logistics and utilities are expected to see the highest IoT spending in coming years. The pace of IoT adoption is inextricably linked to that of related technologies such as 5G, artificial intelligence and cloud computing. Data privacy and security will be the greatest constraint to IoT adoption.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ruijun Duan ◽  
Li Guo

As a disruptive emerging technology, the Internet of things (IoT) has rapidly developed, but its privacy risks and security vulnerabilities are still key challenges. The decentralized and distributed architecture of blockchain has the potential to satisfy IoT privacy and security requirements. This gives birth to the new domain of blockchain for IoT (BIoT). BIoT will cause significant transformations across several industries, paving the way for new business models. Based on the Science Citation Index Expanded (SCIE) and Social Sciences Citation Index (SSCI) databases in Web of Science (WoS) Core Collection, this study aims to explore the research trends and cooperation in the field of BIoT using the bibliometric method. The results indicate that the publications in this field have increased significantly from 2016 to 2020, with China and the USA being the most productive and influential countries. Keyword co-occurrence analysis shows that the most important research topics are as follows: security issues, core technologies, application dimensions, and transaction processes. Text mining analysis indicates that future research directions for BloT will focus more on both computing paradigms and key applications. This study will provide researchers with a greater understanding on the state of the art of BIoT and will serve as a reference for researchers engaging in this field to identify their own future research directions.


Author(s):  
Rajendra Akerkar

A wide range of smart mobility technologies are being deployed within urban environment. These technologies generate huge quantities of data, much of them in real-time and at a highly granular scale. Such data about mobility, transport, and citizens can be put to many beneficial uses and, if shared, for uses beyond the system and purposes for which they were generated. Jointly, these data create the evidence base to run mobility services more efficiently, effectively, and sustainably. However, generating, processing, analyzing, sharing, and storing vast amounts of actionable data also raises several concerns and challenges. For example, data privacy, data protection, and data security issues arise from the creation of smart mobility. This chapter highlights the various privacy and security concerns and harms related to the deployment and use of smart mobility technologies and initiatives, and makes suggestions for addressing apprehensions about and harms arising from data privacy, protection, and security issues.


In The Today’s Environment Digitization Plays A Vital Role In Daily Aspects Of Life And Mostly All The Appliances Are Digitally Connected And Smart In Operation That Grows Rapidly In All Over The World. For This, Iot Frameworks Is Mainly Applied And Utilized To Build Different Types Iot Applications. During The Formation Of Applications In Iot, Different Types Of Rules, Standards And Procedures Are Used Which Is Embedded In The Iot Framework. While Implementing The Privacy And Security In The Applications Needs A Variety Of Procedures And Mechanisms For Confirmations That All The Things Are Properly Working And Threat Avoidance. This Paper Focuses On Assessment Of Various Security Mechanisms Which Can Be Applied To Build An Iot Application. Also, The Pros And Cons Of Each Technique In The Domain Of Iot Application.


Internet-of-Things (IoT) has been considered as a fundamental part of our day by day existence with billions of IoT devices gathering information remotely and can interoperate within the current Internet framework. Fog computing is nothing but cloud computing to the extreme of network security. It provides computation and storage services via CSP (Cloud Service Provider) to end devices in the Internet of Things (IoT). Fog computing allows the data storing and processing any nearby network devices or nearby cloud endpoint continuum. Using fog computing, the designer can reduce the computation architecture of the IoT devices. Unfortunitily, this new paradigm IoT-Fog faces numerous new privacy and security issues, like authentication and authorization, secure communication, information confidentiality. Despite the fact that the customary cloud-based platform can even utilize heavyweight cryptosystem to upgrade security, it can't be performed on fog devices drectly due to reseource constraints. Additionally, a huge number of smart fog devices are fiercely disseminated and situated in various zones, which expands the danger of being undermined by some pernicious gatherings. Trait Based Encryption (ABE) is an open key encryption conspire that enables clients to scramble and unscramble messages dependent on client qualities, which ensures information classification and hearty information get to control. Be that as it may, its computational expense for encryption and unscrambling stage is straightforwardly corresponding to the multifaceted nature of the arrangements utilized. The points is to assess the planning, CPU burden, and memory burden, and system estimations all through each phase of the cloud-to-things continuum amid an analysis for deciding highlights from a finger tapping exercise for Parkinson's Disease patients. It will be appeared there are confinements to the proposed testbeds when endeavoring to deal with upwards of 35 customers at the same time. These discoveries lead us to a proper conveyance of handling the leaves the Intel NUC as the most suitable fog gadget. While the Intel Edison and Raspberry Pi locate a superior balance at in the edge layer, crossing over correspondence conventions and keeping up a self-mending network topology for "thing" devices in the individual territory organize.


Author(s):  
Syrine Sahmim Ep Guerbouj ◽  
Hamza Gharsellaoui ◽  
Sadok Bouamama

This journal article deals with the most important existing problems of security and privacy of the Cloud Computing (CC), Internet of Things (IoT) and Cloud of Things (CoT) concepts especially confidentiality issues. With the evolution of ubiquitous computing, everything is connected everywhere, therefore these concepts have been widely studied in the literature. However, due to the systems complexity and the difficulty to control each access attempt, intrusions and vulnerabilities will be more recurrent. To tackle this issue, researchers have been focused on various approaches enforcing security and privacy. In the present article, risk factors and solutions regarding these technologies are reviewed then current and future trends are discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Y.P. Tsang ◽  
C.H. Wu ◽  
W.H. Ip ◽  
Wen-Lung Shiau

PurposeDue to the rapid growth of blockchain technology in recent years, the fusion of blockchain and the Internet of Things (BIoT) has drawn considerable attention from researchers and industrial practitioners and is regarded as a future trend in technological development. Although several authors have conducted literature reviews on the topic, none have examined the development of the knowledge structure of BIoT, resulting in scattered research and development (R&D) efforts.Design/methodology/approachThis study investigates the intellectual core of BIoT through a co-citation proximity analysis–based systematic review (CPASR) of the correlations between 44 highly influential articles out of 473 relevant research studies. Subsequently, we apply a series of statistical analyses, including exploratory factor analysis (EFA), hierarchical cluster analysis (HCA), k-means clustering (KMC) and multidimensional scaling (MDS) to establish the intellectual core.FindingsOur findings indicate that there are nine categories in the intellectual core of BIoT: (1) data privacy and security for BIoT systems, (2) models and applications of BIoT, (3) system security theories for BIoT, (4) frameworks for BIoT deployment, (5) the fusion of BIoT with emerging methods and technologies, (6) applied security strategies for using blockchain with the IoT, (7) the design and development of industrial BIoT, (8) establishing trust through BIoT and (9) the BIoT ecosystem.Originality/valueWe use the CPASR method to examine the intellectual core of BIoT, which is an under-researched and topical area. The paper also provides a structural framework for investigating BIoT research that may be applicable to other knowledge domains.


2018 ◽  
pp. 77-92 ◽  
Author(s):  
Srinivas Sethi ◽  
Sai Sruti

Cloud computing refers to the basic setup for an emerging model of service delivery, that has the advantage of decreasing the cost by sharing computing, infrastructure including storage resources. This can be combined with on-demand delivery mechanism relying on a pay-per-use model. Cloud computing offers an added level of risk because of essential services provided by it to a third party, which makes it difficult to maintain data privacy and security. Security in cloud computing is a critical aspect, which has various issues and challenges related to it. Cloud service providers/ brokers and the cloud service users should make aware of safety cloud. That is the cloud is safe enough from all kinds of the threats, so that the users do not face any problem like; loss of data or data theft. There is a possibility that, a malicious user can enters the cloud by imitating an authentic user, thus corrupt the entire cloud. It can affect many users who are sharing these types of clouds. This chapter mentions the list of parameters that disturb the security of the cloud. This also explores the cloud security issues and challenges faced by cloud service provider/brokers and cloud service users like; data, privacy, and infected application. Finally, it discusses the countermeasure for handling these issues and its challenges.


Sign in / Sign up

Export Citation Format

Share Document