scholarly journals Computation Method of Gear Dynamic Response Using Experimental Strain Data and Application in Pitting Fault Analysis

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongzhi Qu ◽  
Haoliang Zhang ◽  
Zechao Wang ◽  
Zude Zhou

In this paper, A semi-physical method for calculating time varying mesh stiffness and the dynamic response of gear system based on experimental strain data is studied. In a previous work, it was reported that dynamic strain on gear tooth root can be measured under normal operating condition using fiber Bragg Grating (FBG) sensors. This paper aims to compute gear dynamic response using experimental strain data and give an explanation of the fault propagation process. Using the dynamic strain data from FBG sensors, a method for calculating the dynamic response of gear system is proposed. Based on the theory of potential energy and material mechanics, the relationship between the bending strain of the tooth root and the time varying mesh stiffness is established. The time varying mesh stiffness and dynamic response of healthy gear and pitted gear are then calculated respectively. The force transmission during gear mesh under the condition of surface pitting is analyzed. It is concluded that in the case of pitting fault, there will be a significant loss of torque in the power transmission process due to the loss of contact area. It is further inferred that the loss of meshing force andthedecreasing of Hertzian contact stiffness are the major contributing factors for pitting fault. In addition, the semi-analytical method of computing gear dynamic response is validated with experimental study ofacceleration signal in the perspective of dynamic response.  


2021 ◽  
Vol 160 ◽  
pp. 104291
Author(s):  
Andreas Beinstingel ◽  
Michael Keller ◽  
Michael Heider ◽  
Burkhard Pinnekamp ◽  
Steffen Marburg


2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.



2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Jie Liu ◽  
Weiqiang Zhao ◽  
Weiwei Liu

Considering the microstructure of tooth surface and the dynamic characteristics of the vibration responses, a compound dynamic backlash model is employed for the gear transmission system. Based on the fractal theory and dynamic center distance, respectively, the dynamic backlash is presented, and the potential energy method is applied to compute the time-varying meshing stiffness, including the healthy gear system and the crack fault gear system. Then, a 16-DOF coupled lateral-torsional gear-rotor-bearing transmission system with the crack fault is established. The fault characteristics in the time-domain waveform and frequency response and statistics data are described. The effect of crack on the time-varying meshing stiffness is analyzed. The vibration response of three backlash models is compared. The dynamic response of the system is explored with the increase in crack depth in detail. The results show that the fault features of countershaft are more obvious. Obvious fluctuations are presented in the time-domain waveform, and sidebands can be found in the frequency domain responses when the tooth root crack appears. The effect of compound dynamic backlash on the system is more obvious than fixed backlash and backlash with changing center distance. The vibration displacement along meshing direction and dynamic meshing force increases with the increase in crack depth. Backlash and variation of center distance show different tendencies with increasing crack depth under different rotational speeds. Amplitude of the sidebands increases with crack depth increasing. The amplitude of multiplication frequency of rotational frequency has an obvious variation with growing crack depth. The sidebands of the multiplication frequency of meshing frequency show more details on the system with complex backlash and crack fault.



2016 ◽  
Vol 24 (8) ◽  
pp. 1518-1534 ◽  
Author(s):  
Alişan Yüceşan ◽  
Semih Sezer

In this paper, the influence of clutch disk pre-damper mechanism constituents on the idle rattle phenomenon was investigated with an analytical model containing a new time-varying gear mesh stiffness function. Comparing experimental results to simulation results for the same excitation input was the key implementation for the validation of proposed model. The engine speed fluctuations represented in the simulation was imported from a speed measurement of a diesel engine in the test bench.



2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Wang ◽  
Lei Zhang ◽  
Yuan-Qing Luo ◽  
Chang-Zheng Chen

In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result.



2017 ◽  
Vol 89 (1) ◽  
pp. 49-60 ◽  
Author(s):  
S. Wei ◽  
Q. K. Han ◽  
X. J. Dong ◽  
Z. K. Peng ◽  
F. L. Chu


Author(s):  
Elizabeth Slavkovsky ◽  
Murat Inalpolat ◽  
Anders Flodin

Abstract This study employs an analytical model of a gear pair with transverse-torsional dynamics that allows analysis of single-sided, double-sided, and random rattle situations to contrast rattle characteristics of isotropic PM gears with a baseline steel gearset. This model utilizes time-varying gear mesh stiffness and transmission error as the internal excitation sources and time-varying operating torque as an external excitation. The gear rattle performance of PM gears is investigated under different torque conditions and operating speeds. The system kinetic and potential energy is assessed as an evaluation tool that can indicate the severity of different rattle conditions. The dynamic response of two different versions of an existing PM gear design are compared with a baseline traditional steel gear.



2019 ◽  
Vol 33 (3) ◽  
pp. 1019-1032 ◽  
Author(s):  
Xiuzhi He ◽  
Xiaoqin Zhou ◽  
Zhen Xue ◽  
Yixuan Hou ◽  
Qiang Liu ◽  
...  


Author(s):  
Yichao Guo ◽  
Robert G. Parker

Back-side gear tooth contact happens when the anti-backlash (or scissor) gears are applied or tooth wedging occurs. An accurate description of the back-side gear tooth mesh stiffness is important to any study on gear dynamics that involves tooth wedging or anti-backlash mechanism. This work studies the time-varying back-side mesh stiffness and its correlation with backlash by analyzing the relationship between the drive-side and back-side mesh stiffnesses. Results of this work yield the general form of the back-side mesh stiffness or gear tooth variation function for an arbitrary gear pair. The resultant analytical formulae are confirmed by the simulation results from Calyx that precisely tracks gear tooth contact without any predefined relations.



Sign in / Sign up

Export Citation Format

Share Document