scholarly journals Development of Multivariate Failure Threshold with Quantifiable Operation Risks in Machine Prognostics

2020 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Xiaodong Jia ◽  
Wenzhe Li ◽  
Wei Wang ◽  
Xiang Li ◽  
Jay Lee

Prognostics and Health Management (PHM) is attracting the attention from both academia and industry due to its great potential to enhance the resilience and responsiveness of the equipment to the potential operation risks. In literature, many methodologies are proposed to predict the Remaining Useful Life (RUL) of the equipment. However, there are two major challenges that limit the practicality of these methodologies. 1) How to generate a quantifiable Health Indicator (HI) to represent the operation risks? 2) How to define a reasonable failure threshold to predict RUL? To answer these two questions, this paper proposes a novel methodology for failure threshold determination with quantifiable operation risk in machine prognostics. In the proposed methodology, Fisher distance and Mann-Kendall (MK) test are firstly used to extract useful sensors based on which HI is estimated by applying Principle Component Analysis (PCA). Then, Rao-Blackwellized Particle Filter (RBPF) is employed to obtain the HI prediction and the uncertainties. Afterwards, a Bivariate-Weibull-distribution-based risk quantification model is designed to quantify the cumulative risk over time and over the increase of HI. The failure threshold, which is the ending point of the RUL, varies over different users and applications depending on the level of risk they want to tolerate. The validation of the methodology is based on the C-MAPSS data from the PHM data competition 2008 hosted by PHM society. The results validate the effectiveness of the proposed risk quantification method and its potential application on machine prognostics.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yuhuang Zheng

Prognostics health management (PHM) of rotating machinery has become an important process for increasing reliability and reducing machine malfunctions in industry. Bearings are one of the most important equipment parts and are also one of the most common failure points. To assess the degradation of a machine, this paper presents a bearing remaining useful life (RUL) prediction method. The method relies on a novel health indicator and a linear degradation model to predict bearing RUL. The health indicator is extracted by using Hilbert–Huang entropy to process horizontal vibration signals obtained from bearings. We present a linear degradation model to estimate RUL using this health indicator. In the training phase, the degradation detection threshold and the failure threshold of this model are estimated by the distribution of 600 bootstrapped samples. These bootstrapped samples are taken from the six training sets. In the test phase, the health indicator and the model are used to estimate the bearing’s current health state and predict its RUL. This method is suitable for the degradation of bearings. The experimental results show that this method can effectively monitor bearing degradation and predict its RUL.


2020 ◽  
Vol 14 ◽  
Author(s):  
Dangbo Du ◽  
Jianxun Zhang ◽  
Xiaosheng Si ◽  
Changhua Hu

Background: Remaining useful life (RUL) estimation is the central mission to the complex systems’ prognostics and health management. During last decades, numbers of developments and applications of the RUL estimation have proliferated. Objective: As one of the most popular approaches, stochastic process-based approach has been widely used for characterizing the degradation trajectories and estimating RULs. This paper aimed at reviewing the latest methods and patents on this topic. Methods: The review is concentrated on four common stochastic processes for degradation modelling and RUL estimation, i.e., Gamma process, Wiener process, inverse Gaussian process and Markov chain. Results: After a briefly review of these four models, we pointed out the pros and cons of them, as well as the improvement direction of each method. Conclusion: For better implementation, the applications of these four approaches on maintenance and decision-making are systematically introduced. Finally, the possible future trends are concluded tentatively.


2021 ◽  
Author(s):  
Mohammad Rubyet Islam ◽  
Peter Sandborn

Abstract Prognostics and Health Management (PHM) is an engineering discipline focused on predicting the point at which systems or components will no longer perform as intended. The prediction is often articulated as a Remaining Useful Life (RUL). RUL is an important decision-making tool for contingency mitigation, i.e., the prediction of an RUL (and its associated confidence) enables decisions to be made about how and when to maintain the system. PHM is generally applied to hardware systems in the electronics and non-electronics application domains. The application of PHM (and RUL) concepts has not been explored for application to software. Today, software (SW) health management is confined to diagnostic assessments that identify problems, whereas prognostic assessment potentially indicates when in the future a problem will become detrimental to the operation of the system. Relevant areas such as SW defect prediction, SW reliability prediction, predictive maintenance of SW, SW degradation, and SW performance prediction, exist, but all represent static models, built upon historical data — none of which can calculate an RUL. This paper addresses the application of PHM concepts to software systems for fault predictions and RUL estimation. Specifically, we wish to address how PHM can be used to make decisions for SW systems such as version update, module changes, rejuvenation, maintenance scheduling and abandonment. This paper presents a method to prognostically and continuously predict the RUL of a SW system based on usage parameters (e.g., numbers and categories of releases) and multiple performance parameters (e.g., response time). The model is validated based on actual data (on performance parameters), generated by the test beds versus predicted data, generated by a predictive model. Statistical validation (regression validation) has been carried out as well. The test beds replicate and validate faults, collected from a real application, in a controlled and standard test (staging) environment. A case study based on publicly available data on faults and enhancement requests for the open-source Bugzilla application is presented. This case study demonstrates that PHM concepts can be applied to SW systems and RUL can be calculated to make decisions on software version update or upgrade, module changes, rejuvenation, maintenance schedule and total abandonment.


Author(s):  
Pradeep Lall ◽  
Hao Zhang ◽  
Lynn Davis

The reliability consideration of LED products includes both luminous flux drop and color shift. Previous research either talks about luminous maintenance or color shift, because luminous flux degradation usually takes very long time to observe. In this paper, the impact of a VOC (volatile organic compound) contaminated luminous flux and color stability are examined. As a result, both luminous degradation and color shift had been recorded in a short time. Test samples are white, phosphor-converted, high-power LED packages. Absolute radiant flux is measured with integrating sphere system to calculate the luminous flux. Luminous flux degradation and color shift distance were plotted versus aging time to show the degradation pattern. A prognostic health management (PHM) method based on the state variables and state estimator have been proposed in this paper. In this PHM framework, unscented kalman filter (UKF) was deployed as the carrier of all states. During the estimation process, third order dynamic transfer function was used to implement the PHM framework. Both of the luminous flux and color shift distance have been used as the state variable with the same PHM framework to exam the robustness of the method. Predicted remaining useful life is calculated at every measurement point to compare with the tested remaining useful life. The result shows that state estimator can be used as the method for the PHM of LED degradation with respect to both luminous flux and color shift distance. The prediction of remaining useful life of LED package, made by the states estimator and data driven approach, falls in the acceptable error-bounds (20%) after a short training of the estimator.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Aisong Qin ◽  
Qinghua Zhang ◽  
Qin Hu ◽  
Guoxi Sun ◽  
Jun He ◽  
...  

Remaining useful life (RUL) prediction can provide early warnings of failure and has become a key component in the prognostics and health management of systems. Among the existing methods for RUL prediction, the Wiener-process-based method has attracted great attention owing to its favorable properties and flexibility in degradation modeling. However, shortcomings exist in methods of this type; for example, the degradation indicator and the first predicting time (FPT) are selected subjectively, which reduces the prediction accuracy. Toward this end, this paper proposes a new approach for predicting the RUL of rotating machinery based on an optimal degradation indictor. First, a genetic programming algorithm is proposed to construct an optimal degradation indicator using the concept of FPT. Then, a Wiener model based on the obtained optimal degradation indicator is proposed, in which the sensitivities of the dimensionless parameters are utilized to determine the FPT. Finally, the expectation of the predicted RUL is calculated based on the proposed model, and the estimated mean degradation path is explicitly derived. To demonstrate the validity of this model, several experiments on RUL prediction are conducted on rotating machinery. The experimental results indicate that the method can effectively improve the accuracy of RUL prediction.


Author(s):  
Behnam Razavi ◽  
Farrokh Sassani

The tasks of maintenance and repair without optimal planning can be costly and result in prolonged maintenance times, reduced availability and possible flight delays. Aircraft manufacturers and maintainers see significant benefits in constantly improving Health Management and Maintenance (HMM) practices by deploying the most effective maintenance planning strategies. The planning of the maintenance and repair is a complex task due to chain dependency of engines to aircraft, and aircraft to the flight schedules. This paper presents a scheduling method for determining the time of maintenance based on the historical engine operation data in order to maximize the use of estimated remaining useful life of the engines as well as lowering the cost and duration of the downtime. The Time-on-Wing (TOW) data is used in conjunction with probability density functions to determine the shape of the respective distribution of the time of maintenance to minimize the loss of expected remaining useful life. Data from each engine with most chance of failure is then selected and fed into an extended Branch and Bound (B&B) routine to determine the best optimum sequence for entering the facility in order to minimize the waiting time.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hai-Kun Wang ◽  
Yi Cheng ◽  
Ke Song

The remaining useful life estimation is a key technology in prognostics and health management (PHM) systems for a new generation of aircraft engines. With the increase in massive monitoring data, it brings new opportunities to improve the prediction from the perspective of deep learning. Therefore, we propose a novel joint deep learning architecture that is composed of two main parts: the transformer encoder, which uses scaled dot-product attention to extract dependencies across distances in time series, and the temporal convolution neural network (TCNN), which is constructed to fix the insensitivity of the self-attention mechanism to local features. Both parts are jointly trained within a regression module, which implies that the proposed approach differs from traditional ensemble learning models. It is applied on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset from the Prognostics Center of Excellence at NASA Ames, and satisfactory results are obtained, especially under complex working conditions.


Author(s):  
Yingkui Gu ◽  
Qingpeng Bi ◽  
Guangqi Qiu

Abstract To improve the accuracy of our previous bearing ensemble Remaining Useful Life (RUL) prediction model using the Genetic Algorithm (GA), Support Vector Regression (SVR), and the Weibull Proportional Hazard Model (WPHM) (see reference [1]), we proposed a more practical Health Indicator (HI) construction methodology for bearing ensemble RUL prediction. A weighted coefficient determination method for four prognostic metrics-monotonicity, robustness, trendability, and consistency-was proposed to select sensitive health features accurately using the Analytic Hierarchy Process (AHP). The selected sensitive health features were fused through isometric feature mapping (ISOMAP), and Differential Evolution (DE) was employed to replace GA for computing the optimal weight coefficients of each input fused feature. One-dimensional HI was constructed by multiplying each input fused feature with the corresponding optimal weight coefficient, and RUL prediction was implemented through an extreme learning machine (ELM) and WPHM. The accuracy and effectiveness of the proposed method were validated by a bearing experiment. The results show that HI construction with ISOMAP-DE has achieved the best performance, and the proposed ELM-WPHM model is compared with BP-WPHM, SVM-WPHM, LSTM-WPHM, and DLSTM-WPHM in terms of RMSE criteria. The minimum error and training time appear in ELM-WPHM, indicating the superiority of the proposed bearing ensemble RUL prediction model.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Guisheng Hou ◽  
Shuo Xu ◽  
Nan Zhou ◽  
Lei Yang ◽  
Quanhao Fu

Accurate predictions of remaining useful life (RUL) of important components play a crucial role in system reliability, which is the basis of prognostics and health management (PHM). This paper proposed an integrated deep learning approach for RUL prediction of a turbofan engine by integrating an autoencoder (AE) with a deep convolutional generative adversarial network (DCGAN). In the pretraining stage, the reconstructed data of the AE not only participate in its error reconstruction but also take part in the DCGAN parameter training as the generated data of the DCGAN. Through double-error reconstructions, the capability of feature extraction is enhanced, and high-level abstract information is obtained. In the fine-tuning stage, a long short-term memory (LSTM) network is used to extract the sequential information from the features to predict the RUL. The effectiveness of the proposed scheme is verified on the NASA commercial modular aero-propulsion system simulation (C-MAPSS) dataset. The superiority of the proposed method is demonstrated via excellent prediction performance and comparisons with other existing state-of-the-art prognostics. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising prediction approach and an efficient feature extraction scheme.


Sign in / Sign up

Export Citation Format

Share Document