scholarly journals ADDITION OF MAGNESIUM (Mg) WITH ALUMINA (AL2O3) REINFORCER IN ALUMINUM MATERIAL COMPOSITES ON THE MECHANICAL PROPERTIES AND MICRO STRUCTURES

Author(s):  
Basuki Widodo ◽  
Agung Panji Sasmito

Aluminum is a widely used and applied material in daily life or in the industrial and automotive world. In order to improve the performance and properties of the application to be used, it needed an alloying element to improve the mechanical properties of the aluminum. Aluminum Matrix Composite (AMC) or better known as aluminum matrix composite is one type of material that has great potential to be developed, due to its good combination and properties such as high strength and hardness, low density, low density, capable of good machining, and its basic ingredients are easily found on the market and cheaper than other materials. This research was conducted using the stir casting process to be able to mix all the compositions contained in aluminum matrix composites and to help the distribution of alumina reinforcing particles (Al2O3) and aluminum matrices be evenly distributed. The parameters used in this casting process are varying the volume fraction of the Al2O3 amplifier by 0.5%; 1.5% and 2.5% plus the magnesium content remains 0.9%. The results showed that the addition of Al2O3 can increase the value of hardness and reduce the value of tensile strength. The highest hardness value was 75.3 HRB at the addition of Al2O3 by 2.5% and the lowest tensile strength value was 7.17 Kgf / mm2 with the percentage of Al2O3 addition of 0.5%.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1213
Author(s):  
Dae-Young Kim ◽  
Pil-Ryung Cha ◽  
Ho-Seok Nam ◽  
Hyun-Joo Choi ◽  
Kon-Bae Lee

The nitridation-induced self-formed aluminum matrix composite (NISFAC) process is based on the nitridation reaction, which can be significantly influenced by the characteristics of the starting materials (e.g., the chemical composition of the aluminum powder and the type, size, and volume fraction of the ceramic reinforcement) and the processing variables (e.g., process temperature and time, and flow rate of nitrogen gas). Since these variables do not independently affect the nitridation behavior, a systematic study is necessary to examine the combined effect of these variables upon nitridation. In this second part of our two-part report, we examine the effect of nitrogen flow rates and processing temperatures upon the degree of nitridation which, in turn, determines the amount of exothermic reaction and the amount of molten Al in the nitridation-induced self-formed aluminum matrix composite (NISFAC) process. When either the nitrogen flow rate or the set temperature was too low, high-quality composites were not obtained because the level of nitridation was insufficient to fill the powder voids with molten Al. Hence, since the filling of the voids in the powder bed by molten Al is essential to the NISFAC process, the conditions should be optimized by manipulating the nitrogen flow rate and processing temperature.


2021 ◽  
Vol 18 (1) ◽  
pp. 97-101
Author(s):  
Shuib Pasha S A ◽  
Nayeem Ahmed M ◽  
Tilak S R ◽  
Anil Kumar B N

Composite materials are defined as material systems consisting of mixture of or combination of two or more micro constituents insoluble in each other and differing in form and or material composition. In this study Metal Matrix Composite (MMCs) has been produced using stir casting method for performing the mechanical properties. Most of the engineering industries want light and better mechanical properties of components; this can be achieved by MMCs of Aluminium because of its excellent performance. In this research work we fabricate the Aluminium by liquid route. Here Al 7075 is used as a base metal and Multi Walled Carbon Nanotubes (MWCNT) used as sub metal with various percentages. Experiments were conducted to analyze microstructure, hardness & tensile strength. By using optical microscope and Scanning Electron Microscope (SEM) we analyze the sample specimens are well dispersion in MWCNT with AA 7075. Hardness and tensile strength increases with increasing of wt. %. Hardness of material increases with increase in percentages of MWCNT, whereas tensile strength of the material increases with increase in percentages of MWCNT and Elongation reduces


2021 ◽  
Vol 5 (12) ◽  
pp. 307
Author(s):  
Yongbum Choi ◽  
Xuan Meng ◽  
Zhefeng Xu

A new fabrication process without preform manufacturing has been developed for carbon short fiber (CSF) reinforced various aluminum matrix composites. And their mechanical and thermal properties were evaluated. Electroless Ni plating was conducted on the CSF for improving wettability between the carbon fiber (CF) and aluminum. It was confirmed that pores in Ni plated CSF/Al and Al alloy matrix composites prepared by applied pressure, 0.8 MPa, had some imperfect infiltration regions between the CF/CF and CF/matrix in all composites. However, pores size in the region between the CF/CF and CF/matrix to use the A336 matrix was about 1 µm. This size is smaller than that of other aluminum-based composites. Vickers hardness of Ni plated CSF/A1070, A356 alloy, and A336 alloy composites were higher as compared to matrix. However, the A1070 pure aluminum matrix composite had the highest hardness improvement. The Ultimate tensile strength of the A1070 and A356 aluminum matrix composite was increased due to carbon fiber compared to only aluminum, but the Ultimate tensile strength of the A336 aluminum matrix composite was rather lowered due to the highest content of Si precipitate and large size of Al3Ni compounds. The Thermal Conductivity of Ni plated CSF/A1070 composite has the highest value (167.1 W·m−1·K−1) as compared to composites.


2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


2018 ◽  
Vol 941 ◽  
pp. 2018-2023
Author(s):  
Paul Royes ◽  
Nicolas Masquelier ◽  
Thierry Breville ◽  
David Balloy

Aluminum-Carbon nanoFibers (CNF) composites produce by stir casting process present a yield strengths (YS) and an ultimate tensile strength (UTS) improved up to 33%. The hardening of the Al-CNF composite was considered as the sum of elementary contributions of effects: natural hardness of pure Al; grain size; dislocation density; elements in solid solution; CNF. In order to quantify CNF effect, calculation was performed to quantify the contribution to yield strength of each other’s mechanisms. This theoretical calculation was compared to experimental results and the real effect of CNF on yield strength increase was estimated between 10 and 16%. Figure SEQ Figure \* ARABIC 1: Graphical Abstract (copper dots on CNF / stir casting process / contributions to hardening) Keywords: Aluminum matrix composite; copper-coated carbon nanofibers; liquid metallurgy elaboration; mechanical properties; hardening effect


1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


Sign in / Sign up

Export Citation Format

Share Document