scholarly journals Effect of Material and Process Variables on Characteristics of Nitridation-Induced Self-Formed Aluminum Matrix Composites—Part 2: Effect of Nitrogen Flow Rates and Processing Temperatures

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1213
Author(s):  
Dae-Young Kim ◽  
Pil-Ryung Cha ◽  
Ho-Seok Nam ◽  
Hyun-Joo Choi ◽  
Kon-Bae Lee

The nitridation-induced self-formed aluminum matrix composite (NISFAC) process is based on the nitridation reaction, which can be significantly influenced by the characteristics of the starting materials (e.g., the chemical composition of the aluminum powder and the type, size, and volume fraction of the ceramic reinforcement) and the processing variables (e.g., process temperature and time, and flow rate of nitrogen gas). Since these variables do not independently affect the nitridation behavior, a systematic study is necessary to examine the combined effect of these variables upon nitridation. In this second part of our two-part report, we examine the effect of nitrogen flow rates and processing temperatures upon the degree of nitridation which, in turn, determines the amount of exothermic reaction and the amount of molten Al in the nitridation-induced self-formed aluminum matrix composite (NISFAC) process. When either the nitrogen flow rate or the set temperature was too low, high-quality composites were not obtained because the level of nitridation was insufficient to fill the powder voids with molten Al. Hence, since the filling of the voids in the powder bed by molten Al is essential to the NISFAC process, the conditions should be optimized by manipulating the nitrogen flow rate and processing temperature.

Author(s):  
Basuki Widodo ◽  
Agung Panji Sasmito

Aluminum is a widely used and applied material in daily life or in the industrial and automotive world. In order to improve the performance and properties of the application to be used, it needed an alloying element to improve the mechanical properties of the aluminum. Aluminum Matrix Composite (AMC) or better known as aluminum matrix composite is one type of material that has great potential to be developed, due to its good combination and properties such as high strength and hardness, low density, low density, capable of good machining, and its basic ingredients are easily found on the market and cheaper than other materials. This research was conducted using the stir casting process to be able to mix all the compositions contained in aluminum matrix composites and to help the distribution of alumina reinforcing particles (Al2O3) and aluminum matrices be evenly distributed. The parameters used in this casting process are varying the volume fraction of the Al2O3 amplifier by 0.5%; 1.5% and 2.5% plus the magnesium content remains 0.9%. The results showed that the addition of Al2O3 can increase the value of hardness and reduce the value of tensile strength. The highest hardness value was 75.3 HRB at the addition of Al2O3 by 2.5% and the lowest tensile strength value was 7.17 Kgf / mm2 with the percentage of Al2O3 addition of 0.5%.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950091 ◽  
Author(s):  
JIAOJIAO DU ◽  
HAIBIN ZHOU ◽  
CAIXIA SUN ◽  
HAIJIANG KOU ◽  
ZHONGWEI MA ◽  
...  

A new approach was adopted to improve the corrosion behavior of the chromium nitride (CrNx) hard coating through magnetron sputtering deposition at different nitrogen flow rates. The influence of the nitrogen flow rates on the chemical composition, microstructure, mechanical property and corrosion behavior in artificial seawater of the CrNx coatings was investigated. The results show that with the increase of the nitrogen flow rates, the growth structure of the coatings varied from dense granular growth to coarse columnar growth. Increasing the nitrogen flow rates was helpful to decrease the Cr/N ratio and induce the phase transforming from mixed hexagonal Cr2N and face-centered cubic CrN to single CrN. However, the coatings under different nitrogen flow rates significantly improved the corrosion resistance and hardness of the steel substrate. Furthermore, at high nitrogen flow rate, the coating had high corrosion velocity and low protective capability against the substrate corrosion due to the fast corrosion channels acted by the columnar grain boundaries. While at the middle nitrogen flow rate, the coating with CrN phase, densely granular growth structure and moderate grain size resulted in excellent corrosion resistance and highest hardness.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2024
Author(s):  
Jun Liang ◽  
Chunjing Wu ◽  
Zihang Zhao ◽  
Weizhong Tang

In order to promote the industrialization of the large deformation technology of carbon fiber composites, this paper studies a new method of forming of helical carbon fiber reinforced aluminum matrix composite. The purpose is to solve the problem of large deformation of carbon fiber with low elongation and metal matrix with high elongation. By introducing carbon fiber with helical space structure into the aluminum matrix, the helical carbon fiber reinforced aluminum matrix composites were prepared and the subsequent drawing deformation was carried out. Here we systematically studied the large plastic deformation behavior of helical carbon fiber reinforced aluminum matrix composite via a combination of numerical simulations and experiments, and analyzed the deformation law and stress of helical carbon fiber in the deformation process. We found that the plastic deformation of the composite causes local stress concentration around the helical carbon fiber, and the helical carbon fiber will move synchronously with the aluminum matrix during the deformation, and receive the pressure from the aluminum matrix. Second, the best process parameters obtained from the simulation, that is, the drawing die angle α = 7°, when five-pass drawing experiments were carried out, the total deformation reached 58%, and the average elongation of a single pass was 18.9%. The experimental show carbon fiber reinforced aluminum matrix composite with helical space structure can achieve large deformation and high strength. The experimental and simulation are in general agreement, which verifies the correctness of the carbon fiber helical structure model.


2005 ◽  
Vol 297-300 ◽  
pp. 2790-2794
Author(s):  
Ji Tai Niu ◽  
Wei Guo ◽  
Jin Fan Zhai ◽  
Mu Zhen Wang

In this paper, a new method for welding aluminum matrix composites is mainly described. It is liquid-phase-impact (LPI) diffusion welding, which has gained China National Patent. The results show that by liquid-phase-impact diffusion welding, when the certain amount of liquid phase alloy appears, with effect of certain impact speed, the interface of matrix-reinforcement and reinforcement-reinforcement are joined perfectly. Because the welding time is very short, the harmful phase is avoided in welded area and bad effect on the interface between the aluminum matrix and reinforcement hasn’t caused, and the work efficiency has improved enormously. With the technique, particle reinforcement aluminum matrix composite SiCp/ZL101 has welded successfully, and joint strength is about 75% of the strength of composite (as-casted), deformation less than 3%.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1412
Author(s):  
Hansen Zheng ◽  
Zhifeng Zhang ◽  
Yuelong Bai

The requirements of high-strength, wear-resistance and lightweight of brake drums have been continually increasing in recent years and any specific aluminum alloy or particle-reinforced aluminum matrix composites may not satisfy all the demands. Combining dissimilar materials to play their respective advantages is a solution to this problem. In this study, a compound casting method was used to combine solid SiCp/A357 composite and a liquid 7050 aluminum alloy to prepare an aluminum matrix composite with a layered structure. The ProCAST numerical simulation software was used to predict the heat transfer in compound casting process and guide the preheating temperature of the wear-resistant ring in the experiment. An Optical Microscope (OM) and Scanning Electron Microscope (SEM) were used to observe microstructures around the solid–liquid bonding interface, the element distribution and phase component of which were analyzed by Energy Dispersive Spectroscopy (EDS) and mechanical properties were evaluated by microhardness and shear tests. The results showed that the interface of the layered aluminum matrix composite prepared by this method achieved complete metallurgical bonding and a transition zone formed on the solid surface. After T6 heat treatment, the average shear strength of the interface increased from 19.8 MPa to 33.8 MPa.


2019 ◽  
Vol 4 (3) ◽  
pp. 21-31
Author(s):  
Marlenne Gómez-Ramírez ◽  
Lizbeth Soto-Ruvalcaba ◽  
Martín Nieto-Pérez ◽  
Norma G. Rojas-Avelizapa

Microbiological food safety is a major issue and the genus Aspergillus is of great interest given the frequency of its toxin contamination in grains. This paper describes the use of cold plasma generated with argon and a mixture of argonnitrogen as a method of sanitizing lentil beans. Lentil beans were sanitized and exposed to Aspergillus flavus conidia then four different experimental sets were prepared, using only argon and a mixture of argon-nitrogen to generate plasma at nitrogen flow rates of 1.2, 0.81 and 0.32 L/min. Each lentil bean was exposed for 5, 10 and 15 min to plasma. Assays were performed in triplicate. Beans not exposed to plasma were used as controls. All plasma treatments caused a lethal effect on A. flavus conidia within exposure periods of 5 to 15 min. The application of argon plasma showed a log10 reduction of 0.81 (84%) after 15 min. The mixture of argon: nitrogen at 0.81 and 0.32 L/min had a higher lethal effect than argon alone. Although lentil beans sterilization was not completely achieved, an important log10 reduction of 1.43 (96.44 %) and 5.53 (99.99 %) of A. flavus conidia was obtained after 15 min of exposure to the plasma generated by argon-nitrogen mixture using nitrogen at flow rates of 0.81 and 0.32 L/min, respectively. Nitrogen flow rate of 0.32 L/min showed a reduction above 3.0 logarithmic units, so this treatment showed a fungicidal activity. The lowest reduction, 0.3 logarithmic units (50.3 %) was observed at a nitrogen flow rate of 1.2 L/min. Additionally, as a consequence of plasma exposure, conidia of A. flavus showed a delay in germination process and also conidia formation was affected. It was concluded that cold plasma could be used as an alternative to sanitize grains and avoid contamination by microorganisms, which cause grain deterioration and affect its nutritional properties.


10.30544/569 ◽  
2020 ◽  
Vol 26 (4) ◽  
pp. 349-355
Author(s):  
Ivana Cvijović‐Alagić ◽  
Vesna Maksimović ◽  
Milan T Jovanović

Recent research in the material science field is focused on the easy-to-apply and cost-effective production of the structural components with enhanced mechanical properties. As an answer to these new trends in the present study, the inexpensive household aluminum foils are used to produce the multilayer aluminum matrix composite. The aluminum matrix composites are manufactured by hot-rolling of the sandwiched foils and afterward subjected to microstructural characterization and mechanical testing. Analysis of the produced composite microstructure and fracture surface obtained after tensile testing was performed using the scanning electron microscopy (SEM). The qualitative fractographic analysis revealed that the ductile fracture features prevail in the overall fracture mode of the investigated multilayer composite, while the quantitative fractographic investigation allowed more detailed insight into the composite failure process and depicted critical parameters that led to the composite failure.


2021 ◽  
Author(s):  
MARWA YACOUTI, ◽  
MARYAM SHAKIBA

This paper studies the mechanical properties of superelastic zirconia-reinforced aluminum-matrix composites through finite element simulations of microstructural representations. The objective of this study is to exploit the reversible phase transformation of zirconia to develop a composite with improved strength and energy dissipation capacity. Zirconia is a shape memory ceramic with promising potential in actuation, energy damping, and fatigue applications. Compared to the most commonly used shape memory alloys, zirconia is distinguished by a wider operational temperature range, higher recoverable strains, and a larger energy dissipation. The two-phase composite studied in this work consists of 16 mol% ceria-doped zirconia particles embedded in an aluminum matrix. The behavior of zirconia is simulated using the isothermal superelastic constitutive relationship proposed by Auricchio and Taylor. A series of numerical simulations is conducted to examine the effects of the matrix yield stress as well as the particles’ diameter and volume fraction on the evolution of the phase transformation, the strength, and the energy dissipation of the composite. A random generating algorithm is used to produce the locations of zirconia reinforcing particles. The results indicate that zirconia-reinforced aluminum-matrix composite exhibits enhanced strength and energy dissipation. The incorporation of 50% zirconia volume fraction improves the maximum stress by 50% while the amount of energy dissipation is increased by 24%. This paper provides insight into the potential application of zirconia-based composites for an efficient damping response.


2015 ◽  
Vol 641 ◽  
pp. 30-38 ◽  
Author(s):  
Magdalena Suśniak ◽  
Joanna Karwan-Baczewska ◽  
Iwona Sulima

AlSi5Cu2 alloy matrix composite have been studied by microscopic examination and basic tribological properties was evaluated. Composite material was produced by the mechanical milling and spark plasma sintering technique. After sintering process SiC particles were uniformly distributed in the matrix. The wear and the friction coefficients were determinate as a function of the SiC volume fraction. The addition of SiC wt. % had significant effect on tribological properties of that composites. The increase in reinforcement content improves the wear resistance of obtained materials.


2020 ◽  
pp. 002199832095769
Author(s):  
Jakob D Hamilton ◽  
Srikanthan Ramesh ◽  
Ola LA Harrysson ◽  
Christopher D Rock ◽  
Iris V Rivero

Cryogenic mechanical alloying (cryomilling) was employed to fabricate aluminum matrix composite powder feedstock for additive manufacturing. The high energy milling of the powder system induces a homogenous distribution of reinforcement particles in the matrix powder by recurrent fracture and cold welding. In this study, aluminum matrix composite feedstock were produced via different cryomilling techniques at varying compositions, powder charges, and milling times. As-milled powders were characterized for particle size distribution, morphology, and homogeneity. Resultant powder demonstrated varying characteristics correlated to milling parameters. Powder metallurgy samples were also fabricated to understand as-sintered reinforcement distribution and the resultant strengthening. This research provides an indication of cryomilling capabilities to become an effective method for custom alloy powder production for powder bed fusion additive manufacturing.


Sign in / Sign up

Export Citation Format

Share Document