scholarly journals A Genetic-Fuzzy System Algorithm Method for the Breast Cancer Diagnosis Problem

2021 ◽  
Vol 8 (2) ◽  
pp. 74-77
Author(s):  
Normalisa

Breast cancer is an important medical problem, especially for women, computer-aided medical diagnosis is very important in terms of prevention and early detection. This paper presents early detection of breast cancer using two methods, namely genetic algorithm and fuzzy inference system which will be used for early detection of breast cancer which will be used by doctors with computer assistance to obtain medical diagnosis of breast cancer in Indonesia. Our research shows that the diagnosis of breast cancer using these two methods has a high level of accuracy.

Author(s):  
F. M. Okikiola ◽  
E. E. Aigbokhan ◽  
A. M. Mustapha ◽  
I. O. Onadokun ◽  
O. A. Akinade

The death rate is caused by breast cancer in women is increasingly high and growing. A number of people are getting to lose this part of their body due to late diagnosis of this disease. This therefore requires the development of an efficient and accurate diagnosis approach that will aid providing the knowledge of the type of breast cancer type and severity in order to reduce the mortality rate through the disease. This need serves as the major motivation for this work. In this paper, we proposed a fuzzy expert system for diagnosis of and treatment recommendation of breast cancer problems which provide physicians and patients with information of the cancer type and treatment recommendation. The application was designed using JAVA programming language, MATLAB and SQLite database engine. This application permits update of new information as a means of knowledge. The evaluation showed that the inclusion of the fuzzy inference system improved the accuracy and precision of the system from 0.8 to 0.9. The system is user-friendly and has high level of acceptability from the validation conducted at the end of the research.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


Author(s):  
Pooja Pathak ◽  
Anand Singh Jalal ◽  
Ritu Rai

Background: Breast cancer represents uncontrolled breast cell growth. Breast cancer is the most diagnosed cancer in women worldwide. Early detection of breast cancer improves the chances of survival and increases treatment options. There are various methods for screening breast cancer such as mammogram, ultrasound, computed tomography, Magnetic Resonance Imaging (MRI). MRI is gaining prominence as an alternative screening tool for early detection and breast cancer diagnosis. Nevertheless, MRI can hardly be examined without the use of a Computer-Aided Diagnosis (CAD) framework, due to the vast amount of data. Objective: This paper aims to cover the approaches used in CAD system for the detection of breast cancer. Method: In this paper, the methods used in CAD systems are categories in two classes: the conventional approach and artificial intelligence (AI) approach. The conventional approach covers the basic steps of image processing such as preprocessing, segmentation, feature extraction and classification. The AI approach covers the various convolutional and deep learning networks used for diagnosis. Conclusion: This review discusses some of the core concepts used in breast cancer and presents a comprehensive review of efforts in the past to address this problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Jinyu Cong ◽  
Benzheng Wei ◽  
Yunlong He ◽  
Yilong Yin ◽  
Yuanjie Zheng

Breast cancer has been one of the main diseases that threatens women’s life. Early detection and diagnosis of breast cancer play an important role in reducing mortality of breast cancer. In this paper, we propose a selective ensemble method integrated with the KNN, SVM, and Naive Bayes to diagnose the breast cancer combining ultrasound images with mammography images. Our experimental results have shown that the selective classification method with an accuracy of 88.73% and sensitivity of 97.06% is efficient for breast cancer diagnosis. And indicator R presents a new way to choose the base classifier for ensemble learning.


Author(s):  
Yifeng Dou ◽  
Wentao Meng

As one of the most vulnerable cancers of women, the incidence rate of breast cancer in China is increasing at an annual rate of 3%, and the incidence is younger. Therefore, it is necessary to conduct research on the risk of breast cancer, including the cause of disease and the prediction of breast cancer risk based on historical data. Data based statistical learning is an important branch of modern computational intelligence technology. Using machine learning method to predict and judge unknown data provides a new idea for breast cancer diagnosis. In this paper, an improved optimization algorithm (GSP_SVM) is proposed by combining genetic algorithm, particle swarm optimization and simulated annealing with support vector machine algorithm. The results show that the classification accuracy, MCC, AUC and other indicators have reached a very high level. By comparing with other optimization algorithms, it can be seen that this method can provide effective support for decision-making of breast cancer auxiliary diagnosis, thus significantly improving the diagnosis efficiency of medical institutions. Finally, this paper also preliminarily explores the effect of applying this algorithm in detecting and classifying breast cancer in different periods, and discusses the application of this algorithm to multiple classifications by comparing it with other algorithms.


Author(s):  
Mohammed A. Osman ◽  
Ashraf Darwish ◽  
Ayman E. Khedr ◽  
Atef Z. Ghalwash ◽  
Aboul Ella Hassanien

Breast cancer or malignant breast neoplasm is the most common type of cancer in women. Researchers are not sure of the exact cause of breast cancer. If the cancer can be detected early, the options of treatment and the chances of total recovery will increase. Computer Aided Diagnostic (CAD) systems can help the researchers and specialists in detecting the abnormalities early. The main goal of computerized breast cancer detection in digital mammography is to identify the presence of abnormalities such as mass lesions and Micro calcification Clusters (MCCs). Early detection and diagnosis of breast cancer represent the key for breast cancer control and can increase the success of treatment. This chapter investigates a new CAD system for the diagnosis process of benign and malignant breast tumors from digital mammography. X-ray mammograms are considered the most effective and reliable method in early detection of breast cancer. In this chapter, the breast tumor is segmented from medical image using Fuzzy Clustering Means (FCM) and the features for mammogram images are extracted. The results of this work showed that these features are used to train the classifier to classify tumors. The effectiveness and performance of this work is examined using classification accuracy, sensitivity and specificity and the practical part of the proposed system distinguishes tumors with high accuracy.


Author(s):  
Patrícia F. P. Ferraz ◽  
Tadayuki Yanagi Junior ◽  
Yamid F. Hernandez-Julio ◽  
Gabriel A. e S. Ferraz ◽  
Maria A. J. G. Silva ◽  
...  

ABSTRACT The aim of this study was to estimate and compare the respiratory rate (breath min-1) of broiler chicks subjected to different heat intensities and exposure durations for the first week of life using a Fuzzy Inference System and a Genetic Fuzzy Rule Based System. The experiment was conducted in four environmentally controlled wind tunnels and using 210 chicks. The Fuzzy Inference System was structured based on two input variables: duration of thermal exposure (in days) and dry bulb temperature (°C), and the output variable was respiratory rate. The Genetic Fuzzy Rule Based System set the parameters of input and output variables of the Fuzzy Inference System model in order to increase the prediction accuracy of the respiratory rate values. The two systems (Fuzzy Inference System and Genetic Fuzzy Rule Based System) proved to be able to predict the respiratory rate of chicks. The Genetic Fuzzy Rule Based System interacted well with the Fuzzy Inference System model previously developed showing an improvement in the respiratory rate prediction accuracy. The Fuzzy Inference System had mean percentage error of 2.77, and for Fuzzy Inference System and Genetic Fuzzy Rule Based System it was 0.87, thus indicating an improvement in the accuracy of prediction of respiratory rate when using the tool of genetic algorithms.


Sign in / Sign up

Export Citation Format

Share Document