scholarly journals PEMBUATAN MEMBRAN FOTOKATALITIK DARI SELULOSA DIASETAT SERBUK GERGAJI KAYU JATI (TECTONA GRANDIS L.F.) DAN TIO2 UNTUK PENGOLAHAN LIMBAH BAKU AIR PDAM

2019 ◽  
Vol 1 (2) ◽  
pp. 20-24
Author(s):  
Fitriyatin Najiyah

                Membrane technology is growing rapidlybecause of its superiority and has beenwidely applied in various industries. Thewaste of teak sawdust is increasing as thefurniture industry develops, but its utilizationis not optimal. The purpose of this study wasto determine the effect of the addition of TiO2on the mechanical properties andperformance of photocalytic membranesfrom cellulose diacetate teak sawdust forprocessing PDAM water raw materials.Cellulose isolation from teak sawdust wascarried out by adding NaOH 17.5% (b / v)and continued with cellulose bleachingprocess. Cellulose teak sawdust wassynthesized into cellulose diacetate byacetylation method. Membrane production isdone by phase inversion method withvariations in the composition of TiO2 0.25%,0.5%, 0.75% and 1% and also variations inevaporation time 20 seconds, 25 seconds,30 seconds and 35 seconds. The photocyticmembrane of cellulose diacetate from teaksawdust and TiO2 produced wascharacterized by thickness test, mechanicalproperties and performance. Photocalyticmembranes with optimum conditions arecharacterized by SEM (Scanning ElectronMicroscopy), FT-IR (Fourier TransformInfraRed) and antibacterial effectiveness.The optimum composition of thephotocatalytic membrane is 16% cellulosediacetate, 4% formamide, acetone 79% and1% TiO2 with 30 seconds evaporation time.The mechanical properties obtained werestress 1562,50000 kN / m2, strains 0.01 m /m and Young Modulus 141593,4835 kN /m2. The membrane has an averagethickness of 0.04 mm, a flux value of 683.10L.m2.hari-1, a rejection value of 97.74% andan antibacterial effectiveness of 99.57%.  

2019 ◽  
Vol 19 (7) ◽  
pp. 2072-2078 ◽  
Author(s):  
Öykü Mutlu Salmanli ◽  
Sevgi Güneş Durak ◽  
Güler Türkoğlu Demirkol ◽  
Neşe Tüfekci

Abstract In this work, a series of polyetherimide (PEI) flat sheet membranes were produced with different concentrations of polyvinylpyrrolidone (PVP) addition via the phase inversion method. The effects of additions on membrane morphology and performance were investigated. Synthesized membrane had the properties of ultrafiltration membrane. Although PEI is not widely used for water treatment, in this study, the ferrous iron removal rate was investigated and good results were obtained. Through the membrane production experiments, the PEI content was 22 wt%. PVP was added as a pore-forming agent with concentrations of 2, 4 and 8 wt%. N-methyl-2-pyrrolidone (NMP) was used as solvent. Distilled water was used for the coagulation bath. After production, all membranes were characterized by using contact angle, permeability, porosity, and scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT/IR) analyses. With the increasing doses of PVP addition, the permeability of the PEI membranes produced in this study increased, while porosity results were changeable. The permeability was 23 L/m2h bar for the membrane with 2 wt% PVP content, while the permeability for the membrane with 8 wt% PVP content was 32 L/m2h bar. Contact angles increased with PVP addition to PEI membranes. With the increasing PVP concentration, the finger-like pores and the pores located in the sub-layer expanded.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Masooma Irfan ◽  
Hatijah Basri ◽  
M. Irfan

In this work, the effect of different phase inversion process on membrane morphology and performance was studied. Polyethersulfone (PES) based polymeric membranes was fabricated containing polyvinylpyrrolidone (PVP) and carboxylic functionalized multiwall carbon nanotubes (MWCNT) as additives and polyethylene glycol (PEG) having a molecular weight 1K, 10K and 35K (Dalton) were used as a model solution for observing the rejection/filteration ability of fabricated membranes. Non-solvent induce phase separation (NIP) and dry-wet phase separation (DWP) method was adopted for membrane synthesis. The FTIR spectra showed that PVP/MWCNT was effectively blended with PES polymer and different phase inversion method led to different internal morphologies of membranes as confirmed by FESEM images. The PEG rejection results suggested that membranes formed by DWP method had approximately double rejection ability than membranes formed by NIP process.


2018 ◽  
Vol 1145 ◽  
pp. 90-94
Author(s):  
Yong Dong Zhao ◽  
Zhi Ping Zhao ◽  
Shuo Li ◽  
Peng Lu

Chloromethylated polysulfone (PSF-Cl) porous microspheres were prepared with non-solvent induced phase inversion method for the immobilization of acidic ionic liquid ([MIMBS][HSO4]). FT-IR, SEM, and 1H-NMR were used to characterize the structure and property of polysulfone porous microsphere supported ionic liquid (PSF-ILs). The results showed that acidic ionic liquid was supported onto the PSF-Cl porous microspheres by covalent bond. Furthermore, the catalyst exhibited a good catalytic activity with about 57% acetic acid conversion rate after 8h reaction. After the catalyst was reused for 7 times in the synthesis of ethyl acetate, the yield only decreased 6%.


2018 ◽  
Vol 197 ◽  
pp. 09007
Author(s):  
Syawaliah Syawaliah ◽  
Nasrul Arahman ◽  
Medyan Riza ◽  
Sri Mulyati

The Polyvinylidene Fluoride (PVDF) membrane has been prepared by phase inversion method using N,N-dimethylacetamide (DMAc) as solvent and Poly Ethylene Glycol (PEG) as additive. The fabricated membrane was modified by Polydopamine (PDA) coating in concentration of 0.5 mg/ml and immersion times of 2 hours, 6 hours, and 24 hours. The characteristics and performance of the PVDF membranes before and after the modification are studied in this paper. The result of the water flux experiment showed that the PDA-coated PVDF membranes showcased a higher flux than that of pure PVDF membrane. Scanning Electron Microscopy (SEM) analysis confirmed that the membrane had an asymmetric structure consisting of two layers. There was no significant influence on the addition of PDA to the morphology of the pore matrix because the modification was done by surface coating. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that PDA was successfully introduced on the surface of PVDF membrane with the appearance of O-H from cathecol and N-H peaks at wavenumber range of 3300-3600 cm-1. Modification with PDA increased the mechanical strength of the membrane which affirmed by the results of the tensile and elongation at break evaluation.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Zawati Harun ◽  
Mohd Riduan Jamalludin ◽  
Hatijah Basri ◽  
Muhamad Fikri Shohur ◽  
Nurafiqah Rosman ◽  
...  

This study investigates the effects of synthetic silica(SiO2)with different weight percentage concentrations on the morphology and performance of the polysulfone (PSf) and polyethelene glycol (PEG) based membrane ultrafiltration (UF). Phase inversion method was used to prepare PSf/PEG ultrafiltration (UF) flatsheet membrane. SiO2 and N-Methyl 2 Pyrrolidone (NMP) were used as an additive and solvent respectively. The fabricated membrane was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and the performances of the membranes were measured in term of pure water flux by using distilled water and solute rejection at different wastewater concentration at 50%, 75% and 87.5%. The result showed that the addition of 2% silica in the dope solution increased the permeation in terms pure water flux and the best rejection with 62 Lm-2 h-1 and 89% (at 87.5 % waste water dilution) respectively


2016 ◽  
Vol 75 (3) ◽  
pp. 670-685 ◽  
Author(s):  
Nadir Dizge ◽  
Hakan Gonuldas ◽  
Yasin Ozay ◽  
Hasan Ates ◽  
Kasim Ocakoglu ◽  
...  

This study was performed to synthesize membranes of polyethersulfone (PES) blended with graphene oxide (GO) and PES blended with GO functionalized with photoactive semiconductor catalyst (TiO2 and ZnO). The antifouling and self-cleaning properties of composite membranes were also investigated. The GO was prepared from natural graphite powder by oxidation method at low temperature. TiO2 and ZnO nanopowders were synthesized by anhydrous sol–gel method. The surface of TiO2 and ZnO nanopowders was modified by a surfactant (myristic acid) to obtain a homogeneously dispersed mixture in a solvent, and then GO was functionalized by loading with these metal oxide nanopowders. The PES membranes blended with GO and functionalized GO into the casting solution were prepared via phase inversion method and tested for their antifouling as well as self-cleaning properties. The composite membranes were synthesized as 14%wt. of PES polymer with three different concentrations (0.5, 1.0, and 2.0%wt.) of GO, GO-TiO2, and GO-ZnO. The functionalization of membranes improved hydrophilicity property of membranes as compared to neat PES membrane. However, the lowest flux was obtained by functionalized membranes with GO-TiO2. The results showed that functionalized membranes demonstrated better self-cleaning property than neat PES membrane. Moreover, the flux recovery rate of functionalized membranes over five cycles was higher than that of neat membrane.


Sign in / Sign up

Export Citation Format

Share Document