scholarly journals Asymmetrical ZVS-PWM Switched-Capacitor Based Half-Bridge DC-DC Converter With Switch Peak Voltage of Vin/2

Author(s):  
Angelica Paula Caus ◽  
Guilherme Martins Leandro ◽  
Ivo Barbi

This paper presents a new power converter topology<br>generated by the integration of the asymmetrical ZVS-PWM dcdc converter with a switched-capacitor ladder-type commutation<br>cell. Circuit operation and theoretical analysis with emphasis on<br>the soft-commutation process are included in the paper. The<br>main advantage of the proposed converter with respect to the<br>conventional asymmetrical half-bridge dc-dc converter is the<br>reduction of the voltage stress across the power switches to the<br>half of the input dc bus voltage, enabling the utilization of lower<br>voltage rating components. Experiments conducted on a<br>laboratory prototype with 1.4 kW power-rating, 800 V input<br>voltage, 48 V output voltage and 100 kHz switching frequency<br>are included, to verify the theoretical analysis and the design<br>methodology. The maximum efficiency of the experimental nonoptimized prototype was 93.6%.<br>Index Terms - Asymmetrical dc-dc converter, pulse-widthmodulation, switched-capacitor, zero voltage switching.<div><br><br></div>

2020 ◽  
Author(s):  
Angelica Paula Caus

This paper presents a new power converter topology<br>generated by the integration of the asymmetrical ZVS-PWM dcdc converter with a switched-capacitor ladder-type commutation<br>cell. Circuit operation and theoretical analysis with emphasis on<br>the soft-commutation process are included in the paper. The<br>main advantage of the proposed converter with respect to the<br>conventional asymmetrical half-bridge dc-dc converter is the<br>reduction of the voltage stress across the power switches to the<br>half of the input dc bus voltage, enabling the utilization of lower<br>voltage rating components. Experiments conducted on a<br>laboratory prototype with 1.4 kW power-rating, 800 V input<br>voltage, 48 V output voltage and 100 kHz switching frequency<br>are included, to verify the theoretical analysis and the design<br>methodology. The maximum efficiency of the experimental nonoptimized prototype was 93.6%.<br>Index Terms - Asymmetrical dc-dc converter, pulse-widthmodulation, switched-capacitor, zero voltage switching.<div><br><br></div>


2020 ◽  
Author(s):  
Angelica Paula Caus ◽  
Guilherme Martins Leandro ◽  
Ivo Barbi

This paper presents a new power converter topology<br>generated by the integration of the asymmetrical ZVS-PWM dcdc converter with a switched-capacitor ladder-type commutation<br>cell. Circuit operation and theoretical analysis with emphasis on<br>the soft-commutation process are included in the paper. The<br>main advantage of the proposed converter with respect to the<br>conventional asymmetrical half-bridge dc-dc converter is the<br>reduction of the voltage stress across the power switches to the<br>half of the input dc bus voltage, enabling the utilization of lower<br>voltage rating components. Experiments conducted on a<br>laboratory prototype with 1.4 kW power-rating, 800 V input<br>voltage, 48 V output voltage and 100 kHz switching frequency<br>are included, to verify the theoretical analysis and the design<br>methodology. The maximum efficiency of the experimental nonoptimized prototype was 93.6%.<br>Index Terms - Asymmetrical dc-dc converter, pulse-widthmodulation, switched-capacitor, zero voltage switching.<div><br><br></div>


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3502
Author(s):  
Plantić ◽  
Marčič ◽  
Beković ◽  
Štumberger

This paper presents the efficiency improvement in a speed closed-loop controlled permanent magnet synchronous machine (PMSM) sensorless drive. The drive efficiency can be improved by minimizing the inverter and the PMSM losses. These can be influenced by proper selection of DC-bus voltage and switching frequency of the inverter. The direct (d-) and quadrature (q-) axis current references generation methods, discussed in this paper, further improve the efficiency of the drive. Besides zero d-axis current reference control, the maximum torque per ampere (MTPA) characteristic is normally applied to generate the d- and q-axis current references in vector controlled PMSM drives. It assures control with maximum torque per unit of current but cannot assure maximum efficiency. In order to improve efficiency of the PMSM drive, this paper proposes the generation of d- and q-axis current references based on maximum efficiency (ME) characteristic. In the case study, the MTPA and ME characteristics are theoretically evaluated and determined experimentally by measurements on discussed PMSM drive. The obtained characteristics are applied for the d- and q-axis current references generation in the speed closed-loop vector controlled PMSM drive. The measured drive efficiency clearly shows that the use of ME characteristic instead of MTPA characteristic or zero d-axis current in the current references generation improves the efficiency of PMSM drive realizations with position sensor and without it—sensorless control.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2618 ◽  
Author(s):  
Chien-Chun Huang ◽  
Tsung-Lin Tsai ◽  
Yao-Ching Hsieh ◽  
Huang-Jen Chiu

This paper proposes a novel bilateral zero-voltage switching (ZVS) bidirectional converter with synchronous rectification. By controlling the direction and timing of excessive current injection, the main power switches can achieve bilateral ZVS under various loads and output voltages. Compared with the common soft-switching power converter with only zero-voltage turn-on, the proposed bilateral ZVS bidirectional converter can achieve both zero-voltage switching on and off in every switching cycle. This feature can alleviate the output switching noise due to the controlled rising and falling slope of the switch voltage. Furthermore, the voltage slopes almost remain unchanged over a wide range of output voltages and load levels. The most important feature of bilateral ZVS is to reduce the output switching noise. Experimental results based on a 1 kW prototype are presented to demonstrate the performance of the proposed converter. From experimental results on the proposed scheme, the switching noise reduction is about 75%.


2013 ◽  
Vol 67 (3) ◽  
Author(s):  
Aree Wangsupphaphol ◽  
N. R. N. Idris ◽  
A. Jusoh ◽  
N. D. Muhamad

This paper presents the design of a power converter for electric vehicle (EV) applications energized by Li-ion battery (LiB) and supercapacitor (SC). The combination of these energy sources is a good solution for better performances of the EV. A single non-isolated bi-directional converter is proposed in order to get the lowest loss, weight and cost of total electric vehicle applications perspective. The battery voltage represents bus voltage of the power supply system connecting to the load. To control the dynamic of converter, state space averaging technique and power equation linearization are employed to get the transfer function for designing the PI controllers. In order to get the fast response of SC power energizing, the cascade controller is implemented to control current and SC voltage. MATLAB simulation is successfully verified the proposed power converter topology, configuration and controller design for EV. The result shows the capability to settling supply a significant amount of power for step load change within few milliseconds. Sudden load power demand can be drawn from SC. This can reduce the stress of battery as in case of the pure battery power supply system. 


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000388-000393
Author(s):  
Dominique Bergogne ◽  
Fabien Dubois ◽  
Christian Martin ◽  
Khalil El Falahi ◽  
Luong Viet Phung ◽  
...  

Normally-On Silicon Carbide (SiC) JFETs are good candidates for power switches in high temperature applications, in Three-Phase Voltage-Fed Inverters used to drive Electro-Mechanical Actuators (EMA) for the more electrical aircraft where the ambient varies from −55 °C to 200 °C. The power of the EMA is in the 1 to 5 kW range, the DC bus voltage is 540 V. It is also necessary to implement passive subsystems such as Electro-Magnetic-Interference (EMI) filters, power inductors, transformers, packaging and interconnection solution that withstand the wide temperature range. The gate driver for normally-On devices must include a safe solution against short-circuit in the event of a power supply failure. The experimental converter is built using engineering samples such as SiC JFETs, SOI drivers and laboratory made components such as inductive wire wound, nano-crystalline core components, SOI integrated driver, assembled with a high temperature package and technology. Finally, the Smart EMA test bench is presented.


Author(s):  
Pavan Prakash Gupta ◽  
G. Indira Kishore ◽  
Ramesh Kumar Tripathi

In the class of the boost converters, the conventional DC–DC boost converters are in common practice but their limited boost capabilities at higher duty ratios are one of the concerns. The isolated and non-isolated step-up DC–DC converters are one of the remedies of the above issue. The presence of switched inductor and switched capacitors in the circuit of non-isolated configuration can provide considerable step-up in voltage at the output, and also facilitate lower voltage stress on components. In this paper, work has been done to propose three non-isolated high-voltage gain DC–DC boost converter topologies. Along with the high voltage gain, the topologies also have lesser voltage stress across the active power switches and diodes used in topologies. The proposed topologies are suitable for low dc input levels like renewable sources, microgrid and grid-connected applications. A Matlab/Simulink 2017a environment is utilized to derive, design and simulate the proposed topologies for a 100-W load operation. The basic topology is also realized in hardware as a prototype circuit with 100-W resistive load, operated at 50[Formula: see text]kHz switching frequency.


2013 ◽  
Vol 427-429 ◽  
pp. 730-733
Author(s):  
Zhong Ge Wang ◽  
Wei Wang ◽  
Cai Hui

A novel type AC-AC converter based on the switched-capacitor principle is presented. The circuit topology of the switched-capacitor converter, the principle of operation, the equivalent circuit model and an example are described in this paper. In order to demonstrate the performance of this converter in the laboratory, this paper designs a prototype of 600W, 220V high-side voltage, 55V low-side voltage and switching frequency of 50 kHz. The experimental results verify the validity of the theoretical analysis.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2867
Author(s):  
Furkan Karakaya ◽  
Özgür Gülsuna ◽  
Ozan Keysan

There are trade-offs for each power converter design which are mainly dictated by the switching component and passive component ratings. Recent power electronic devices such as Gallium Nitride (GaN) transistors can improve the application range of power converter topologies with lower conduction and switching losses. These new capabilities brought by the GaN High Electron Mobility Transistors (HEMTs) inevitably changes the feasible operation ranges of power converters. This paper investigates the feasibility of Buck and Boost based bi-directional DC/DC converter which utilizes Quasi-Square-Wave (QSW) Zero Voltage Switching (ZVS) on GaN HEMTs. The proposed converter applies a high-switching frequency at high output power to maximize the power density at the cost of high current ripple with high frequency of operation which requires a design strategy for the passive components. An inductor design methodology is performed to operate at 28 APP with a switching frequency of 450 kHz. In order to minimize the high ripple current stress on the output capacitors an interleaving is performed. Finally, the proposed bi-directional converter is operated at 5.4 kW with 5.24 kW/L or 85.9 W/in3 volumetric power density with air-forced cooling. The converter performance is verified for buck and boost modes and full load efficiencies are recorded as 97.7% and 98.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document