scholarly journals Conditional Link Prediction of Category-Implicit Keypoint Detection

Author(s):  
Ellen Yi-Ge ◽  
Rui Fan ◽  
Zechun Liu ◽  
Zhiqiang Shen

<div>Keypoints of objects reflect their concise abstractions, while the corresponding connection links (CL) build the skeleton by detecting the intrinsic relations between keypoints. Existing approaches are typically computationally-intensive, inapplicable for instances belonging to multiple classes, and/or infeasible to simultaneously encode connection information. To address the aforementioned issues, we propose an end-to-end category-implicit Keypoint and Link Prediction Network (KLPNet), which is the first approach for simultaneous semantic keypoint detection (for multi-class instances) and CL rejuvenation. In our KLPNet, a novel Conditional Link Prediction Graph is proposed for link prediction among keypoints that are contingent on a predefined category. Furthermore, a Cross-stage Keypoint Localization Module (CKLM) is introduced to explore feature aggregation for coarse-to-fine keypoint localization. Comprehensive experiments conducted on three publicly available benchmarks demonstrate that our KLPNet consistently outperforms all other state-of-the-art approaches. Furthermore, the experimental results of CL prediction also show the effectiveness of our KLPNet with respect to occlusion problems.</div>

2020 ◽  
Author(s):  
Ellen Yi-Ge ◽  
Rui Fan ◽  
Zechun Liu ◽  
Zhiqiang Shen

<div>Keypoints of objects reflect their concise abstractions, while the corresponding connection links (CL) build the skeleton by detecting the intrinsic relations between keypoints. Existing approaches are typically computationally-intensive, inapplicable for instances belonging to multiple classes, and/or infeasible to simultaneously encode connection information. To address the aforementioned issues, we propose an end-to-end category-implicit Keypoint and Link Prediction Network (KLPNet), which is the first approach for simultaneous semantic keypoint detection (for multi-class instances) and CL rejuvenation. In our KLPNet, a novel Conditional Link Prediction Graph is proposed for link prediction among keypoints that are contingent on a predefined category. Furthermore, a Cross-stage Keypoint Localization Module (CKLM) is introduced to explore feature aggregation for coarse-to-fine keypoint localization. Comprehensive experiments conducted on three publicly available benchmarks demonstrate that our KLPNet consistently outperforms all other state-of-the-art approaches. Furthermore, the experimental results of CL prediction also show the effectiveness of our KLPNet with respect to occlusion problems.</div>


Author(s):  
Nicolas Bougie ◽  
Ryutaro Ichise

Deep reinforcement learning (DRL) methods traditionally struggle with tasks where environment rewards are sparse or delayed, which entails that exploration remains one of the key challenges of DRL. Instead of solely relying on extrinsic rewards, many state-of-the-art methods use intrinsic curiosity as exploration signal. While they hold promise of better local exploration, discovering global exploration strategies is beyond the reach of current methods. We propose a novel end-to-end intrinsic reward formulation that introduces high-level exploration in reinforcement learning. Our curiosity signal is driven by a fast reward that deals with local exploration and a slow reward that incentivizes long-time horizon exploration strategies. We formulate curiosity as the error in an agent’s ability to reconstruct the observations given their contexts. Experimental results show that this high-level exploration enables our agents to outperform prior work in several Atari games.


2021 ◽  
Vol 8 (2) ◽  
pp. 273-287
Author(s):  
Xuewei Bian ◽  
Chaoqun Wang ◽  
Weize Quan ◽  
Juntao Ye ◽  
Xiaopeng Zhang ◽  
...  

AbstractRecent learning-based approaches show promising performance improvement for the scene text removal task but usually leave several remnants of text and provide visually unpleasant results. In this work, a novel end-to-end framework is proposed based on accurate text stroke detection. Specifically, the text removal problem is decoupled into text stroke detection and stroke removal; we design separate networks to solve these two subproblems, the latter being a generative network. These two networks are combined as a processing unit, which is cascaded to obtain our final model for text removal. Experimental results demonstrate that the proposed method substantially outperforms the state-of-the-art for locating and erasing scene text. A new large-scale real-world dataset with 12,120 images has been constructed and is being made available to facilitate research, as current publicly available datasets are mainly synthetic so cannot properly measure the performance of different methods.


Author(s):  
Yao Lu ◽  
Guangming Lu ◽  
Yuanrong Xu ◽  
Bob Zhang

In order to address the overfitting problem caused by the small or simple training datasets and the large model’s size in Convolutional Neural Networks (CNNs), a novel Auto Adaptive Regularization (AAR) method is proposed in this paper. The relevant networks can be called AAR-CNNs. AAR is the first method using the “abstraction extent” (predicted by AE net) and a tiny learnable module (SE net) to auto adaptively predict more accurate and individualized regularization information. The AAR module can be directly inserted into every stage of any popular networks and trained end to end to improve the networks’ flexibility. This method can not only regularize the network at both the forward and the backward processes in the training phase, but also regularize the network on a more refined level (channel or pixel level) depending on the abstraction extent’s form. Comparative experiments are performed on low resolution ImageNet, CIFAR and SVHN datasets. Experimental results show that the AAR-CNNs can achieve state-of-the-art performances on these datasets.


2021 ◽  
Vol 7 ◽  
pp. e815
Author(s):  
Anwar Said ◽  
Muhammad Umar Janjua ◽  
Saeed-Ul Hassan ◽  
Zeeshan Muzammal ◽  
Tania Saleem ◽  
...  

Ethereum, the second-largest cryptocurrency after Bitcoin, has attracted wide attention in the last few years and accumulated significant transaction records. However, the underlying Ethereum network structure is still relatively unexplored. Also, very few attempts have been made to perform link predictability on the Ethereum transactions network. This paper presents a Detailed Analysis of the Ethereum Network on Transaction Behavior, Community Structure, and Link Prediction (DANET) framework to investigate various valuable aspects of the Ethereum network. Specifically, we explore the change in wealth distribution and accumulation on Ethereum Featured Transactional Network (EFTN) and further study its community structure. We further hunt for a suitable link predictability model on EFTN by employing state-of-the-art Variational Graph Auto-Encoders. The link prediction experimental results demonstrate the superiority of outstanding prediction accuracy on Ethereum networks. Moreover, the statistic usages of the Ethereum network are visualized and summarized through the experiments allowing us to formulate conjectures on the current use of this technology and future development.


Author(s):  
Hai Wan ◽  
Yonghao Luo ◽  
Bo Peng ◽  
Wei-Shi Zheng

This paper focuses on scene graph completion which aims at predicting new relations between two entities utilizing existing scene graphs and images. By comparing with the well-known knowledge graph, we first identify that each scene graph is associated with an image and each entity of a visual triple in a scene graph is composed of its entity type with attributes and grounded with a bounding box in its corresponding image. We then propose an end-to-end model named Representation Learning via Jointly Structural and Visual Embedding (RLSV) to take advantages of structural and visual information in scene graphs. In RLSV model, we provide a fully-convolutional module to extract the visual embeddings of a visual triple and apply hierarchical projection to combine the structural and visual embeddings of a visual triple. In experiments, we evaluate our model on two scene graph completion tasks: link prediction and visual triple classification, and further analyze by case studies. Experimental results demonstrate that our model outperforms all baselines in both tasks, which justifies the significance of combining structural and visual information for scene graph completion.


2020 ◽  
Vol 8 (1) ◽  
pp. 33-41
Author(s):  
Dr. S. Sarika ◽  

Phishing is a malicious and deliberate act of sending counterfeit messages or mimicking a webpage. The goal is either to steal sensitive credentials like login information and credit card details or to install malware on a victim’s machine. Browser-based cyber threats have become one of the biggest concerns in networked architectures. The most prolific form of browser attack is tabnabbing which happens in inactive browser tabs. In a tabnabbing attack, a fake page disguises itself as a genuine page to steal data. This paper presents a multi agent based tabnabbing detection technique. The method detects heuristic changes in a webpage when a tabnabbing attack happens and give a warning to the user. Experimental results show that the method performs better when compared with state of the art tabnabbing detection techniques.


2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


Sign in / Sign up

Export Citation Format

Share Document