scholarly journals STUDIES ON MASK-LESS ELECTROCHEMICAL ADDITIVE MANUFACTURING

Author(s):  
Abhishek Bhardwaj

<div>Added substance Manufacturing (AM) of metallic designs is a warm cycle of layer by layer metal added substance fabricating measure produces parts straightforwardly from 3D CAD models. In this assembling interaction confined electrochemical affidavit joins with the added substance producing technique to make metal parts at room temperature. In this paper, the attainability of Mask-less Electrochemical Additive Manufacturing (ECAM), as a non-warm interaction is considered. Layer by layer testimony has been finished utilizing the electrochemical tips to make nickel microstructures. All the while beat wave qualities and their impacts on affidavit have been considered. </div><div>Confined electrodeposition (LED) was investigated as an AM the interaction with high power over measure boundaries and yield boundaries. The confinement of electrodeposition is completed by utilizing Ultra microelectrodes (UME) and low tossing power electrolytes. Variety in some cycle boundaries, for example, voltage and terminal hole are found to have a high impact on yield boundaries like thickness. The reproductions can anticipate the yield width of affidavit of analyses with a blunder of 8- 30%, so it can possibly apply as an added substance-producing strategy of complex three-dimensional (3D) parts on the microscale.</div>

2021 ◽  
Author(s):  
Abhishek Bhardwaj

<div>Added substance Manufacturing (AM) of metallic designs is a warm cycle of layer by layer metal added substance fabricating measure produces parts straightforwardly from 3D CAD models. In this assembling interaction confined electrochemical affidavit joins with the added substance producing technique to make metal parts at room temperature. In this paper, the attainability of Mask-less Electrochemical Additive Manufacturing (ECAM), as a non-warm interaction is considered. Layer by layer testimony has been finished utilizing the electrochemical tips to make nickel microstructures. All the while beat wave qualities and their impacts on affidavit have been considered. </div><div>Confined electrodeposition (LED) was investigated as an AM the interaction with high power over measure boundaries and yield boundaries. The confinement of electrodeposition is completed by utilizing Ultra microelectrodes (UME) and low tossing power electrolytes. Variety in some cycle boundaries, for example, voltage and terminal hole are found to have a high impact on yield boundaries like thickness. The reproductions can anticipate the yield width of affidavit of analyses with a blunder of 8- 30%, so it can possibly apply as an added substance-producing strategy of complex three-dimensional (3D) parts on the microscale.</div>


Author(s):  
Murali M. Sundaram ◽  
Abishek B. Kamaraj ◽  
Varun S. Kumar

Additive manufacturing (AM) of metallic structures by laser based layered manufacturing processes involve thermal damages. In this work, the feasibility of mask-less electrochemical deposition as a nonthermal metallic AM process has been studied. Layer by layer localized electrochemical deposition using a microtool tip has been performed to manufacture nickel microstructures. Three-dimensional free hanging structures with about 600 μm height and 600 μm overhang are manufactured to establish the process capability. An inhouse built CNC system was integrated in this study with an electrochemical cell to achieve 30 layers thick microparts in about 5 h by AM directly from STL files generated from corresponding CAD models. The layer thickness achieved in this process was about 10 μm and the minimum feature size depends on the tool width. Simulation studies of electrochemical deposition performed to understand the pulse wave characteristics and their effects on the localization of the deposits.


2019 ◽  
Vol 141 (05) ◽  
pp. 49-50
Author(s):  
Markus Siebold

Additive manufacturing (AM) is a process that builds parts layer-by-layer from sliced CAD models to form solid objects. Just a few years ago, 3D printing was primarily used for rapid prototyping. Due to improvements in performance, AM has the potential to become a new key technology for serial production. Innovative advances like selective laser melting (SLM) enable the manufacture of high-performance metal parts. Modern printers contain several lasers, which enables the production of multiple parts at the same time. AM includes much more than just 3D printing: It’s an end-to-end process, from design and simulation to 3D printing to post-processing.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Author(s):  
Arivazhagan Pugalendhi ◽  
Rajesh Ranganathan

Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.


2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


2017 ◽  
Vol 107 (06) ◽  
pp. 415-419
Author(s):  
M. Hillebrecht ◽  
V. Uhlenwinkel ◽  
A. von Hehl ◽  
H. Zapf ◽  
B. Schob

Mithilfe laserbasierter generativer Fertigungsverfahren (Laser Additive Manufacturing – LAM) ist es möglich, potentiell komplexe Bauteilgeometrien variantenreich herzustellen. Damit kann Gewicht eingespart werden und Funktionen sind integrierbar. In Kombination mit Automatisierungs- und innovativer Lasertechnik in der Schweiß- und Schneidapplikation lässt sich dieser Prozess wirtschaftlich nutzen. Durch pulverbettbasierte Lasergenerierverfahren können metallische Bauteile schichtweise aufgebaut werden, jedoch ist die Auswahl der Werkstoffe limitiert. Im Forschungsprojekt StaVari (Additive Fertigungsprozesse für komplexe Produkte in variantenreicher und hochfunktionaler Stahlbauweisen) vereinen sich die neuesten Erkenntnisse in Material-, Laser-, Füge- und Automatisierungstechnik, um modernen Anforderungen der Automobilbranche in der Massenfertigung sowie bei der Medizintechnik in der Kleinserie gerecht zu werden. &nbsp; Laser Additive Manufacturing LAM has the potential to generate complex geometries. Through this weight reduction, functional integration and multi-variant production is possible. In combination with automation and innovative laser technology applicated in welding and cutting, this process can be used economically. With powderbed based laser additive manufacturing metal parts can be built up layer by layer. However selection of available metals is limited. In the project StaVari latest findings in material-, laser-, joining and automation technology are joint by qualified partners to meet modern automotive demands in mass production and medicine technology for small batch series.


Author(s):  
Neeraj Panhalkar ◽  
Ratnadeep Paul ◽  
Sam Anand

Additive manufacturing (AM) is widely used in aerospace, automobile, and medical industries for building highly accurate parts using a layer by layer approach. The stereolithography (STL) file is the standard file format used in AM machines and approximates the three-dimensional (3D) model of parts using planar triangles. However, as the STL file is an approximation of the actual computer aided design (CAD) surface, the geometric errors in the final manufactured parts are pronounced, particularly in those parts with highly curved surfaces. If the part is built with the minimum uniform layer thickness allowed by the AM machine, the manufactured part will typically have the best quality, but this will also result in a considerable increase in build time. Therefore, as a compromise, the part can be built with variable layer thicknesses, i.e., using an adaptive layering technique, which will reduce the part build time while still reducing the part errors and satisfying the geometric tolerance callouts on the part. This paper describes a new approach of determining the variable slices using a 3D k-d tree method. The paper validates the proposed k-d tree based adaptive layering approach for three test parts and documents the results by comparing the volumetric, cylindricity, sphericity, and profile errors obtained from this approach with those obtained using a uniform slicing method. Since current AM machines are incapable of handling adaptive slicing approach directly, a “pseudo” grouped adaptive layering approach is also proposed here. This “clustered slicing” technique will enable the fabrication of a part in bands of varying slice thicknesses with each band having clusters of uniform slice thicknesses. The proposed k-d tree based adaptive slicing approach along with clustered slicing has been validated with simulations of the test parts of different shapes.


Author(s):  
Ganzi Suresh

Additive manufacturing (AM) is also known as 3D printing and classifies various advanced manufacturing processes that are used to manufacture three dimensional parts or components with a digital file in a sequential layer-by-layer. This chapter gives a clear insight into the various AM processes that are popular and under development. AM processes are broadly classified into seven categories based on the type of the technology used such as source of heat (ultraviolet light, laser) and type materials (resigns, polymers, metal and metal alloys) used to fabricate the parts. These AM processes have their own merits and demerits depending upon the end part application. Some of these AM processes require extensive post-processing in order to get the finished part. For this process, a separate machine is required to overcome this hurdle in AM; hybrid manufacturing comes into the picture with building and post-processing the part in the same machine. This chapter also discusses the fourth industrial revolution (I 4.0) from the perspective of additive manufacturing.


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 105-109 ◽  
Author(s):  
Sourabh K. Saha ◽  
Dien Wang ◽  
Vu H. Nguyen ◽  
Yina Chang ◽  
James S. Oakdale ◽  
...  

High-throughput fabrication techniques for generating arbitrarily complex three-dimensional structures with nanoscale features are desirable across a broad range of applications. Two-photon lithography (TPL)–based submicrometer additive manufacturing is a promising candidate to fill this gap. However, the serial point-by-point writing scheme of TPL is too slow for many applications. Attempts at parallelization either do not have submicrometer resolution or cannot pattern complex structures. We overcome these difficulties by spatially and temporally focusing an ultrafast laser to implement a projection-based layer-by-layer parallelization. This increases the throughput up to three orders of magnitude and expands the geometric design space. We demonstrate this by printing, within single-digit millisecond time scales, nanowires with widths smaller than 175 nanometers over an area one million times larger than the cross-sectional area.


Sign in / Sign up

Export Citation Format

Share Document