scholarly journals Comprehensive Analysis On A New Type VR-Resolver with Toroidal Windings Under Healthy and Eccentric Cases

Author(s):  
Peyman Naderi

<div>A novel analysis for a new type Variable Reluctance Resolver (VR-Resolver) with toroidal windings is presented in this work. The resolver with various windings configurations as well as different rotor structures is considered for analysis. Position error of the resolvers in both healthy and eccentric cases are studied, where the effect of the eccentricity fault is analyzed for the resolvers with various windings configuration and rotor shapes. Hence, the analysis of the manufacturing tolerance due to the eccentric rotor is obtained by several analyses. Noticing the Magnetic Equivalent Circuit (MEC) method’s flexibility as well as in regards to the analysis of the several structures, a well-known flexible MEC-based method with adjustable accuracy is considered for modeling. Hence shorter processing time and more flexibility compared to Finite-Element-Method (FEM) are needed. Finally, the effectiveness of the presented works is proved by the performed validation via both FEM and experimental results.</div>

2021 ◽  
Author(s):  
Peyman Naderi

<div>A novel analysis for a new type Variable Reluctance Resolver (VR-Resolver) with toroidal windings is presented in this work. The resolver with various windings configurations as well as different rotor structures is considered for analysis. Position error of the resolvers in both healthy and eccentric cases are studied, where the effect of the eccentricity fault is analyzed for the resolvers with various windings configuration and rotor shapes. Hence, the analysis of the manufacturing tolerance due to the eccentric rotor is obtained by several analyses. Noticing the Magnetic Equivalent Circuit (MEC) method’s flexibility as well as in regards to the analysis of the several structures, a well-known flexible MEC-based method with adjustable accuracy is considered for modeling. Hence shorter processing time and more flexibility compared to Finite-Element-Method (FEM) are needed. Finally, the effectiveness of the presented works is proved by the performed validation via both FEM and experimental results.</div>


2020 ◽  
Vol 557 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Y. Tajitsu

We have developed a piezoelectric braided cord consisting of a conducting fiber yarn core, piezoelectric poly-l-lactic acid (PLLA) fiber yarn and a polyethylene terephthalate (PET) middle sheath, and a conducting fiber outer shield (piezoelectric PLLA braided cord). Actually, we made various types of piezoelectric PLLA braided cords using Japanese traditional braiding method called as Kumihimo-gumi in Japanese. Furthermore, by optimization based on the calculation results for each type of piezoelectric PLLA Kumihimo-gumi obtained by the finite element method (FEM), we were able to develop a new type of piezoelectric PLLA braided cord with a sensing function for complex motion (piezoelectric PLLA Kumihimo-gumi). Finally, we developed a new wearable sensor for a selfie stick which is a popular smartphone accessory, fabricated from a piezoelectric PLLA Kumihimo-gumi.


2009 ◽  
Vol 294 ◽  
pp. 27-38 ◽  
Author(s):  
Fabian Ferrano ◽  
Marco Speich ◽  
Wolfgang Rimkus ◽  
Markus Merkel ◽  
Andreas Öchsner

This paper investigates the mechanical properties of a new type of hollow sphere structure. For this new type, the sphere shell is perforated by several holes in order to open up the inner sphere volume and surface. The mechanical behaviour of perforated sphere structures under large deformations and strains in a primitive cubic arrangement is numerically evaluated by using the finite element method for different hole diameters and different joining techniques.


2019 ◽  
Vol 16 (05) ◽  
pp. 1840010 ◽  
Author(s):  
Yuki Onishi

A new type of smoothed finite element method (S-FEM), F-barES-FEM-T4, is demonstrated in static large deformation elastoplastic cases. F-barES-FEM-T4 combines the edge-based S-FEM (ES-FEM) and the node-based S-FEM (NS-FEM) for 4-node tetrahedral (T4) elements with the aid of the F-bar method in order to resolve the major issues of Selective ES/NS-FEM-T4. As well as most of the other S-FEMs, F-barES-FEM-T4 inherits pure displacement-based formulation and thus has no increase in DOF. Moreover, the cyclic smoothing procedure introduced in F-barES-FEM-T4 is effective to adjust the smoothing level so that pressure checkerboarding (oscillation) is suppressed reasonably. Some examples of static large deformation analyses for elastoplastic materials proof the excellent performance of F-barES-FEM-T4 in contrast to the conventional hybrid T4 element formulation.


2014 ◽  
Vol 472 ◽  
pp. 671-676
Author(s):  
Bo Tao Liu ◽  
Yan Qi ◽  
Xiao Han ◽  
Shi Zeng Lv ◽  
Guo Feng Wang

Flange is the key part of the large vacuum container and its stiffness property affects the sealing effect and the stability of the container. Large flange welding process will have a greater impact on its structural strength. In view of the traditional way of forming large vacuum container flange has problems that processing and manufacturing are difficult, more material consumption, and poor stiffness, a new type of flange structure was support. The new design has hollow structure and the welding process of cover flange was simulated through the finite element method. After that, the stress and the deformation were analyzed and then the proper welding scheme was optimized.


Sign in / Sign up

Export Citation Format

Share Document