scholarly journals A 1-to-8 Fully Modular Stacked SIW Antenna Array for Millimeter-Wave Applications

Author(s):  
Cleofás Segura-Gómez ◽  
Ángel Palomares-Caballero ◽  
Pablo Padilla

This paper presents a vertically stacked SIW antenna array that enables different array configurations with the minimum number of SIW layers. This achievement lies in the modular feature offered by the proposed design. Specifically, 4 distinct array configurations can be produced with only 3 different design of SIW layers. Depending on the number of SIW layers employed in the stacked antenna, the directivity in the E-plane of radiation is modified. To obtain an equal and in-phase power distribution among the array elements, H- and E-plane corporate feeding networks are efficiently implemented in each array configuration. Array configurations of 1, 2, 4 and 8 radiating layers are offered by the proposed modular array, where each radiating layer is formed by 8 H-plane SIW horn antennas. The simulated directivity for the array configurations ranges from 15.8 dBi to 23.8 dBi and the main beam direction remains fixed along the operating frequency band. The array design has been manufactured and proper agreement between simulated and measured results are observed. The measured impedance bandwidth in all the array configurations is from 35 GHz to 41 GHz (15.79% bandwidth) with a reduction in the E-plane beamwidth as the number of radiating layers increases.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4404 ◽  
Author(s):  
Son Trinh-Van ◽  
Oh Heon Kwon ◽  
Euntae Jung ◽  
Jinwoo Park ◽  
Byunggil Yu ◽  
...  

This paper presents a low-profile log-periodic meandered dipole array (LPMDA) antenna with wideband and high gain characteristics. The antenna consists of 14 dipole elements. For compactness, a meander line structure is applied to each dipole element to reduce its physical length. As a result, a compact and wideband LPMDA antenna is realized, exhibiting a wide impedance bandwidth of 1.04–5.22 GHz (ratio bandwidth of 5.02:1) for | S 11| < −10 dB. To enhance the antenna gain performance while maintaining the wideband behavior, the LPMDA antenna is integrated with a new design of an artificial magnetic conductor (AMC) structure. The designed AMC is realized by combining three AMC structures of different sizes to form a cascaded multi-section AMC structure, of which its overall operating bandwidth can continuously cover the entire impedance bandwidth of the LPMDA antenna. The proposed AMC-backed LPMDA antenna is experimentally verified and its measured −10 dB reflection bandwidth is found to be in the range of 0.84–5.15 GHz (6.13:1). At the main beam direction within the operating frequency bandwidth, the gain of the proposed AMC-backed LPMDA antenna ranges from 7.15–11.43 dBi, which is approximately 4 dBi higher than that of an LPMDA antenna without an AMC. Moreover, the proposed antenna has a low profile of only 0.138 λ L. ( λ L is the free-space wavelength at the lowest operating frequency).


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Grzegorz Adamiuk ◽  
Mario Pauli ◽  
Thomas Zwick

A concept of an array configuration for an ultrawideband suppression of the cross-polarization is presented. The method is explained in detail, and a mathematical description of the principle is given. It is shown that the presented configuration is convenient for the development of very broad band, dual-orthogonal, linearly polarized antennas with high polarization purity. The investigated configuration shows a high decoupling of the orthogonal ports and is capable for antennas with a main beam direction perpendicular to the substrate surface, that is, for a planar design. The phase center of the antenna configuration remains fixed at one single point over the complete desired frequency range, allowing a minimum dispersion of the radiated signal. The influence of nonidealities in the feeding network on the polarization purity is investigated. The presented method introduces a superior possibility of an extension of typical UWB technique to fully polarized systems, which improves significantly performance in, for example, UWB-MIMO or UWB-Radar.


Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Singh ◽  
Chan H. See ◽  
Raed A. Abd-Alhameed ◽  
Francisco Falcone ◽  
...  

A novel configuration for a super-wide impedance planar antenna is presented based on a 2 &times; 2 microstrip patch antenna (MPA). The antenna comprises a symmetrical arrangement of four-square patches that are interconnected to each other with cross-shaped high impedance microstrip lines. The antenna array is exciting through a single feedline connected to one of the patches. The proposed antenna array configuration overcomes the main drawback of conventional MPA of narrow bandwidth that is typically &lt;5%. The antenna exhibits a super-wide frequency bandwidth from 20 GHz to 120 GHz for S11&lt;&minus;15 dB, which corresponds to a fractional bandwidth of 142.85%. The antenna&rsquo;s performance of bandwidth, impedance match, and radiation gain were enhanced by etching slots on the patches. The slotted microstrip patch essentially acts like a left-handed capacitance to exhibit metamaterial properties over a given frequency range. With the inclusion of the slot the maximum radiation gain and efficiency of the MPA have increased to 15.11 dBi and 85.79% at 80 GHz, which show an improvement of 2.58 dBi and 12.54%, respectively. The dimension of each patch antenna is 30 &times; 30 mm2. The results show that the proposed MPA is useful for various communications existing and emerging systems such as ultra-wideband (UWB) communications, RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and radar systems.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7138
Author(s):  
Firas Abdul Abdul Ghani ◽  
Amir Mohsen Ahmadi Najafabadi ◽  
Heba Saleh ◽  
Murat Kaya Kaya Yapici ◽  
Ibrahim Tekin

In this paper, a dual-polarized four-port 2 × 2 series fed antenna array operating at 28 GHz with beam-switching capability is proposed. The antenna array uses a simple passive beamforming network to switch the main beam. The presented antenna design is suitable for 5G user equipment and high data rates applications by which it has a compact size with low cost and complexity. The size of the antenna is 37.2 × 37.2 mm2 including the ground plane, and it produces 10 different switched beams by using only two simple 3 dB/90∘ couplers which create the required amplitudes and phase excitations for the antenna elements. A one-port simple feeding mechanism including Peregrine PE42525 SPDT switch modules and a power divider is used to generate and measure the 10 switched beams. The antenna design is implemented on a two-layer 0.203 mm thick low-loss (tanδ = 0.0027) Rogers 4003C substrate, and it has a measured 10 dB impedance bandwidth of 4 GHz (14.3%, from 26 GHz to 30 GHz) for all ports. Measured peak isolation between any dual-polarized ports of the antenna is better than 30 dB. The antenna has an average measured realized gain of 8.9 dBi and around 10 dB side lobe level (SLL) for all beams. The antenna has 3-dB coverage of 80∘ to 90∘ in 2D space and it has a maximum of ±26∘ beam-steering angle. The antenna is designed and simulated using Ansys HFSS and fabricated using regular PCB processing.


Author(s):  
M. E. Shevchenko ◽  
A. B. Gorovoy ◽  
V. M. Balashov ◽  
S. N. Solovyov

The paper discusses the features of the application of the ESPRIT method, which provides direction finding of a variety of radio sources with minimal computational costs, including in real time. To be able to use ESPRIT, antenna arrays are required that have the property of shift invariance, and for practical implementation, antenna arrays are required that allow you to form estimates of the directions of arrival of the largest number of signals that overlap in the spectrum, with a minimum number of antennas and reception channels. The aim of the work is to analyze the influence of the antenna array configuration on the features of ESPRIT application for different antenna array with the same number of antennas. A comparative qualitative analysis of the properties and features compared to the MUSIC method is presented. The algorithms developed by the authors for processing multichannel data received by angle and square antenna arrays are presented. It is shown analytically that when using a corner antenna array, it is necessary to take into account the possible presence of signals from indistinguishable-mirror directions of arrival. With a square antenna array, there are no mirror directions of arrival of different signals, which simplifies the implementation of the algorithm. It is shown analytically and by simulation modeling that the configuration of a square antenna array allows to increase the number of simultaneously tracked signals that overlap in the spectrum, compared to a corner antenna array with the same number of antennas.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2306 ◽  
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal Singh Virdee ◽  
Chan H. See ◽  
Raed A. Abd-Alhameed ◽  
Francisco Falcone ◽  
...  

A feasibility study of a novel configuration for a super-wide impedance planar antenna is presented based on a 2 × 2 microstrip patch antenna (MPA) using CST Microwave Studio. The antenna comprises a symmetrical arrangement of four-square patches that are interconnected to each other with cross-shaped high impedance microstrip lines. The antenna array is excited through a single feedline connected to one of the patches. The proposed antenna array configuration overcomes the main drawback of conventional MPA with a narrow bandwidth that is typically <5%. The antenna exhibits a super-wide frequency bandwidth from 20 GHz to 120 GHz for S11 < −15 dB, which corresponds to a fractional bandwidth of 142.85%. The antenna’s performance of bandwidth, impedance match, and radiation gain were enhanced by etching slots on the patches. With the inclusion of the slot, the maximum radiation gain and efficiency of the MPA increased to 15.11 dBi and 85.79% at 80 GHz, which showed an improvement of 2.58 dBi and 12.54%, respectively. The dimension of each patch antenna was 4.3 × 5.3 mm2. The results showed that the proposed MPA is useful for various existing and emerging communication systems such as ultra-wideband (UWB) communications, RFID systems, massive multiple-output multiple-input (MIMO) for 5G, and radar systems.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Mohammed Himdi ◽  
Majeed Alkanhal

Abstract This article presents a 60 GHz coplanar fed slotted antenna based on substrate integrated waveguide (SIW) technology for beam-tilting applications. The longitudinal passive slots are fed via associated SIW holes adjacent to the coplanar feed while the main excitation is provided from the microstrip-to-SIW transition. The antenna array achieves an impedance bandwidth of 57–64 GHz with gains reaching to 12 dBi. The passive SIW slots are excited with various orientations of coplanar feeds and associated holes covering an angular beam-tilting from −56° to +56° with an offset of 10° at the central frequency. The novelty of this work is; beam-tilting is achieved without the use of any active/passive phase shifters which improves the design in terms of losses and provide a much simpler alternative compared to the complex geometries available in the literature at the 60 GHz band.


Sign in / Sign up

Export Citation Format

Share Document