scholarly journals EVALUASI SIFAT KIMIA TANAH DAN HASIL KEDELAI PADA SISTEM AGROFORESTRI BERBASIS POHON JATI

2015 ◽  
Vol 30 (1) ◽  
pp. 20
Author(s):  
Deni Prasetiyo ◽  
Djoko Purnomo ◽  
Supriyadi Supriyadi

<p><em>Soybean is one of the most important food commodities in Indonesia and also it has high value. The needs continue to increase each year, but not offset by increased production become an issue that must be addressed. One attempt to increase soybean production is through the cultivation in agroforestry systems through improving the quality of soil fertility. This research aims to study the effect of various doses of </em><em>litter teak</em><em> and NPK fertilizer on chemical soil fertility and the potential of soybeans yield in agroforestry systems based teak crops. Experiments using a Randomized Complete Block Design </em><em>(RCBD) </em><em>with two factors, namely litter</em><em> teak</em><em> doses (0 ton ha<sup>-1</sup>, 2.500 ton ha<sup>-1</sup>, 5.000 ton ha<sup>-1</sup>, 7.500 ton ha<sup>-1</sup>) and dose</em><em>s</em><em> of NPK fertilizer (60-60-60 and 60-120-60) on Grobogan soybean varieties. The variables measured were pH, organic matter content, N-total soil, cation exchange capacity (CEC), plant tissue of N, P-total soil, and component production. Data analysis using analysis of variance F-test based on the level of 5% and significantly different variables followed by </em><em>Tukey’s method </em><em>level of 5%</em><em>. The results showed that combination treatment with various doses of teak litter NPK fertilizers can increase total nitrogen content of the soil with the highest yield of 1.69% on S1D2 treatment, but to organic matter, CEC, pH, and total soil P not significant effect. Component of soybean varieties of the highest Grobogan of 0.83 tons ha-1 in the treatment S1D1. The result was still below the average of the national soybean production.</em></p>

2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


1969 ◽  
Vol 90 (3-4) ◽  
pp. 145-157 ◽  
Author(s):  
David Sotomayor-Ramírez ◽  
Gustavo A. Martínez

There is a need to quantitatively assess the soil fertility status of tropical soils. Descriptive summaries help describe the effectiveness of liming programs, nutritional limitation in soils and the relative risk of off-field nutrient transport. A database of 1,168 soil test results collected from 1989 to 1999 from nearly 400 cultivated farms in Puerto Rico was used. Samples were analyzed for pH, organic matter (Walkley-Black method), extractable phosphorus (P) (Olsen and Bray 1), and exchangeable bases (NH4Oac method) by a commercial laboratory. Thirty-six percent of the samples had acidity problems (pH <5.5). Twenty-three percent of the samples had low organic matter content (<20 g/kg), and 16% had high category (>40 g/kg) values. Fifty-three and 56% of the samples showed a need to fertilize with magnesium (Mg) and potassium (K), respectively, because they had values below the suggested critical levels of 2.5 cmolc/kg for soil exchangeable Mg and of 0.4 cmolc/kg for K. On the basis of current soil fertility criteria, P fertilization would be required in 69% of the samples with pH less than 7.3, but only in 28% of the samples with pH greater than or equal to 7.3. Although the soils grouped with pH >7.3 had a greater proportion of samples in the "extremely high" soil test P category, the potential environmental impact may be lessened because the climatic and topographic conditions where these soils occur favor less runoff. Follow-up studies are needed to assess the spatial variability and the temporal dynamics of the nutritional status of soils of Puerto Rico. 


2010 ◽  
Vol 58 (Supplement 1) ◽  
pp. 35-40
Author(s):  
S. Hoffmann ◽  
K. Berecz ◽  
S. Simon

Increasing doses of farmyard manure (FYM) or equivalent mineral NPK fertilizers and their combinations were analysed in a crop rotation with potato, maize and winter wheat with special regard to their long-term influence on soil fertility. The yield-increasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK. Fairly high N release (50.9 kg ha −1 ) could be observed on the unfertilized plots. Great differences in N utilization were recorded, depending on the form and dose of fertilizers. The average N utilization from FYM was only 29.3%, while that of the equivalent fertilizer application was 49.8%. The lowest soil reactions were observed without fertilization and at the highest NPK doses. Negative N balances generally resulted in low soil organic matter content. FYM and equivalent NPK fertilizers had a similar influence on the ammonium lactate (AL)-extractable K 2 O content of the soil, while an increase in the AL-P 2 O 5 content could be observed in the case of mineral fertilization.


2019 ◽  
Vol 78 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Beata Bosiacka ◽  
Helena Więcław ◽  
Paweł Marciniuk ◽  
Marek Podlasiński

Abstract The vegetation of protected salt meadows along the Baltic coast is fairly well known; however, dandelions have been so far treated as a collective species. The aim of our study was to examine the microspecies diversity of the genus Taraxacum in Polish salt and brackish coastal meadows and to analyse soil property preferences of the dandelion microspecies identified. In addition, we analysed the relations between soil properties and vegetation patterns in dandelion-supporting coastal meadows (by canonical correspondence analysis). The salt and brackish meadows along the Polish Baltic coast we visited were found to support a total of 27 dandelion microspecies representing 5 sections. Analysis of vegetation patterns showed all the soil parameters (C:N ratio, organic matter content, pH, concentration of Mg, P, K, electrolytic conductivity of the saturated soil extract ECe) to explain 32.07% of the total variance in the species data. The maximum abundance of most dandelion microspecies was associated with the highest soil fertility, moderate pH values and organic matter content, and with the lowest magnesium content and soil salinity. The exceptions were T. latissimum, T. stenoglossum, T. pulchrifolium and T. lucidum the occur-rence of which was related to the lowest soil fertility and the highest salinity. In addition, several microspecies (T. leptodon, T. gentile, T. haematicum, T. fusciflorum and T. balticum) were observed at moderate C:N ratios and ECe. Four other microspecies (T. infestum, T. cordatum, T. hamatum, T. sertatum) occurred at the lowest pH and organic matter content. The information obtained increases the still insufficient body of knowledge on ecological spectra of individual dandelion microspecies, hence their potential indicator properties.


2020 ◽  
pp. 124-132

An evaluation of the productivity of degraded alfisols at Makurdi and Otobi, Nigeria, using artificial desurfacing techniques (ADT) was carried out in 2012 and 2013 cropping seasons. The study was a split-split plot experiment arranged in a Randomized Complete Block Design with three replications. The soil was desurfaced at 0 – 5, 0 – 10, 0 – 15, 0 – 20 cm and the undesurfaced soil, 0 cm (control) depths. The restorative amendments were 9 t ha-1 of poultry dropping as an organic source of manure, N:P2O5:K2O as an inorganic source of manure and zero application as control. Soybean variety TGX 1448-2E and maize variety, Oba super II were used as test crop. Saturated hydraulic conductivity was significantly (P = 0.05) lower at 20 cm (29.08 cm hr-1 ), but did not differ significantly at 0 to 10 cm depths. Soil pH of 5.58 was recorded at 0 cm depth and it decreased to 5.05 at 20 cm depth. Also, organic matter content (1.71 – 1.00 g kg-1 ), total nitrogen (0.12 – 0.08 g kg-1 ) as well as CEC (7.39 – 6.24 cmol kg-1 ) recorded a significant decrease with increase in soil depth from 0 to 20 cm depths. Application of poultry manure increased total porosity and saturated hydraulic conductivity as well as organic matter content across desurfaced depths. Soybean number of leaves was significantly (P = 0.05) reduced at 4, 7, and 10 WAP with increased topsoil removal. The highest grain yield of soybean (1474 kg ha-1 ) was recorded on poultry manure treated plots which were significantly higher (p = 0.05) than other treatments. Application of poultry manure caused 20 % soybean yield reduction at 5 depth, and a 56 % reduction at 20 cm depth.


2021 ◽  
Vol 911 (1) ◽  
pp. 012041
Author(s):  
A Harsono ◽  
D Sucahyono ◽  
E Pratiwi ◽  
A Sarjia ◽  
H Pratiwi ◽  
...  

Abstract The potentcy of acidic soils for soybean development in Indonesia is quite large. However low of soil fertility and microorganisms population become contrains for achieving high productifity of soybean. The aim of this research is to determine the effectiveness of technology packages for 15 biofertilizers formula to increase soybean productivity in acidic soils. The research was conducted during the end of rainy season in South Kalimantan. The soil use in the study had pH 5.2 and soil Al-saturation 34.2%. The reasearch was arranged in a randomized block design, three replications consisted of 20 treatmens, namely: 1) 0 NPK, 2) 50% NPK, 3) 50% NPK +2 t/ha organic fertilizer 4) 70% NPK, 5) 100% NPK (100 kg urea + 100 kg SP36 + 100 kg KCl/ha), 6) Iletrisoy+ Biovam+Starmix, 7) Iletrosoy Plus, 8) Beyonic, 9 Biotrico, 10) Probio New, 11) RhizoBIOST, 12) Bio-SRF, 13) Biopim, 14) BioMIGE, 15) Biocoat, 16) FajarSOYA, 17) Rhizobion, 18) Agrizone, 19) Rhizoplus, and 20) BISRF. For each biological fertilizer, 50-75% of recommended NPK fertilizers were given at 15 days after planting. The results indicated that combination of Biovam + Iletrisoy + Startmix biofertilizers, Iletrisoy plus, Biotricho, Probio New, Bio Mige, and Fajar SOYA were effective for increasing soybean productivity on acidic soils. These biological fertilizers + 50% recommended NPK + 1.5 t/ha organic fertilizer increases pods number, and soybean productivity more than 10% compared to the recommended NPK fertilizer dosage whic was 1.81 t/ha. Several of these biological fertilizers have good prospects to be developed as bio-fertilizers for soybeans in acidic soils.


1994 ◽  
Vol 45 (6) ◽  
pp. 1293 ◽  
Author(s):  
PF White ◽  
NK Nersoyan ◽  
S Christiansen

There is a need to quantify the effects on soil N of introducing different legumes into the farming systems of West Asia and North Africa. This paper presents 6 years results from an on-going experiment aimed at examining the productivity of several crop/livestock farming systems in north west Syria. Changes in total soil N and organic matter when either medic pasture (3 stocking rates), vetch, lentil, fallow or watermelon were rotated yearly with wheat were examined. In addition, in the sixth year of the experiment, mineral N levels in the soil and the N content of the wheat and legumes shoots were determined in order to formulate a simple N balance for each rotation. Medic pasture and vetch rotations increased total soil N and the organic matter content of the soil. Lentil had no effect on total soil N or the organic matter content. Total soil N also remained constant in the fallow rotation, but organic matter content of the soil tended to decrease. The changes in soil properties had implications for the long term production from the different rotations, and highlighted the importance of retaining legume residues for maintaining fertility.


2016 ◽  
Vol 29 (2) ◽  
pp. 290-295 ◽  
Author(s):  
JOSÉ EGÍDIO FLORI ◽  
GERALDO MILANEZ DE RESENDE

ABSTRACT: Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloides, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus communis L., Canavalia ensiformis, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1) and between the banana rows (location 2). There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.


CORD ◽  
2019 ◽  
Vol 35 (01) ◽  
pp. 50
Author(s):  
S. H. S. Senarathne

This study was intended to assess the impact of coconut based Anacardium occidentale (Cashew) agroforestry systems on soil fertility of degraded coconut lands in wet, intermediate and dry zones of Sri Lanka. Two treatments were evaluated according to randomized complete block design with three replicates. Coconut based agroforestry systems intercropped with A. occidentale and sole coconut were evaluated as two treatments. Soils from three depths were analyzed for its’ chemical, physical and biological properties. According to the esults, higher total N, available P and exchangeable K levels were shown in sole coconut systems than A. occidentale intercropped system while the higher total N levels (2% higher than top soil and 27% higher than deepr soil) were observed in sub soils compared top and deep soils. Higher P content was observed in top soils than in deeper soils. The exchangeable K was observed in higher quantities in sub soil than in deeper soils and was varied with locations. Organic matter content in intercropping of A. occidentale has been increased by 37% and the highest was observed in top soils. Soil bulk density has been reduced by 9% in A. occidentale intercropped system enhancing the root growth. Bulk density has been increased with the depth of the soil. Higher soil microbial activity was observed in A. occidentale intercropped system and it was 22% higher than sole coconut system. Sole coconut system has 50% higher soil moisture percentage and the highest was recorded in sub soils. This study confirms that intercropping of A. occidentale has a positive effect on improving soil fertility of degraded coconut growing soils in wet, intermediate and dry zones of Sri Lanka.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Munifatul Izzati ◽  
SRI HARYANTI ◽  
RINI BUDI HASTUTI

Abstract. Izzati M, Haryanti S, Hastuti RB. 2021. Effectivity of bulrush (Scirpus californicus) as a soil conditioner  increasing sandy and clay soil fertility. Biodiversitas 22: 3423-3429. Bullrush (Scirpus californicus) is a species of macrophytes that often populates lakesides. This aquatic plant was rarely studied and its use has not been explored yet. This study was carried out to determine the effects of soil conditioner made from bulrush on sandy and clay soil fertility. Collected bulrush from Rawa Pening lake was milled into a powder and used as a soil conditioner in a proportion of 1:1. After a week, soil fertility was evaluated including organic matter content, water retention, the ratio of C/N, and bacteria population. The study was designed using a Completely Randomized Design with two treatments and control. Resulted data were analyzed using a t-test to evaluate the difference between the two treatments. Results showed that bulrush powder application significantly increased sandy and clay soil fertility. The organic matter content significantly increased in both sandy (p<0,01) and clay soils (p<005). The water retention of sandy soil was increased by 74% (p<0,01), while in clay soil was reduced by 27% (p<0,01). The C/N ratio was significantly reduced in both sandy and clay soil (p<0,05), while the bacteria population significantly increased (p<0,01). It is suggested to use the bulrush as a soil conditioner particularly for sandy and clay soils.


Sign in / Sign up

Export Citation Format

Share Document