QUORUM SENSING in Mycobacterium tuberculosis. Review

MedAlliance ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 6-11

SummaryThe rise in the incidence of tuberculosis expected by many phthisiatricians during the period of the covid pan-demic did not occur, its steady decline continues, which could be due to a sharp reduction in contacts. However, it cannot be ruled out that an extreme increase in stress-ful social factors associated withcovid pandemic may lead to an exacerbation of latent tuberculosis. In addi-tion, the growth of severe forms of the disease, caused by drug-resis tant strains of mycobacterium tuberculosis, continues. The drug resistance of the pathogen, which WHO has de signated as a global threat, the crisis of clas-sical antibio tic therapy dictate the need to develop a new strategy for the treatment of infectious diseases, which consists of influencing the genetic and enzymatic targets that determine the virulence of pathogens. One of the manifestations of bacterial adaptation as a component of virulence is QUORUM SENSING (QS) — a supra organic lev-el of self-organization of bacteria, due to which microbial communities can behave like a multicellular organism. The main phenomenon of QS is the formation of microbi-al biofilms — special communities of microorganisms en-closed in a biopolymer extracellular matrix, which serves as a direct obstacle to the action of immunocompetent cells and antibacterial substances, and also increases drug resistance many times over. Myco bacterial biofilm shave been discovered, which play an essential role in the formation of case ous necrosis, decay cavities and drug resistance. In recent years, there has been an active search for QS inhibitors as tools for alternative therapeu-tic interventions in infectious pathology. In publications on mycobacterial films, it is also emphasized that the dis-covered QS mechanisms in MBT are promising therapeu-tic targets. Thus, the problem of QS of mycobacterium tu-berculosis requires further in-depth and comprehensive study in order to develop methods of alternative therapy for tuberculosis.

2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.


Author(s):  
Deepa Parwani ◽  
Sushanta Bhattacharya ◽  
Akash Rathore ◽  
Chaitali Mallick ◽  
Vivek Asati ◽  
...  

: Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), affecting millions of people worldwide. The emergence of drug resistance is a major problem in the successful treatment of tuberculosis. Due to the commencement of MDR-TB (multi-drug resistance) and XDR-TB (extensively drug resistance), there is a crucial need for the development of novel anti-tubercular agents with improved characteristics such as low toxicity, enhanced inhibitory activity and short duration of treatment. In this direction, various heterocyclic compounds have been synthesized and screened against Mycobacterium tuberculosis. Among them, benzimidazole and imidazole containing derivatives found to have potential anti-tubercular activity. The present review focuses on various imidazole and benzimidazole derivatives (from 2015-2019) with their structure activity relationships in the treatment of tuberculosis.


2002 ◽  
Vol 29 (6) ◽  
pp. 339-346 ◽  
Author(s):  
D L Chopp ◽  
M J Kirisits ◽  
B Moran ◽  
M R Parsek

Author(s):  
Alberto Ruiz ◽  
Marta Herráez ◽  
Stefanie B. Costa‐Gutierrez ◽  
María Antonia Molina‐Henares ◽  
María Jesús Martínez ◽  
...  

2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098493
Author(s):  
Jie Zhang ◽  
Yixuan Ren ◽  
Liping Pan ◽  
Junli Yi ◽  
Tong Guan ◽  
...  

Objective This study analyzed drug resistance and mutations profiles in Mycobacterium tuberculosis isolates in a surveillance site in Huairou District, Beijing, China. Methods The proportion method was used to assess drug resistance profiles for four first-line and seven second-line anti-tuberculosis (TB) drugs. Molecular line probe assays were used for the rapid detection of resistance to rifampicin (RIF) and isoniazid (INH). Results Among 235 strains of M. tuberculosis, 79 (33.6%) isolates were resistant to one or more drugs. The isolates included 18 monoresistant (7.7%), 19 polyresistant (8.1%), 28 RIF-resistant (11.9%), 24 multidrug-resistant (MDR) (10.2%), 7 pre-extensively drug-resistant (XDR, 3.0%), and 2 XDR strains (0.9%). A higher rate of MDR-TB was detected among previously treated patients than among patients with newly diagnosed TB (34.5% vs. 6.8%). The majority (62.5%) of RIF-resistant isolates exhibited a mutation at S531L in the DNA-dependent RNA polymerase gene. Meanwhile, 62.9% of INH-resistant isolates carried a mutation at S315T1 in the katG gene. Conclusion Our results confirmed the high rate of drug-resistant TB, especially MDR-TB, in Huairou District, Beijing, China. Therefore, detailed drug testing is crucial in the evaluation of MDR-TB treatment.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 517
Author(s):  
Magdalena Druszczynska ◽  
Michal Seweryn ◽  
Sebastian Wawrocki ◽  
Magdalena Kowalewska-Pietrzak ◽  
Anna Pankowska ◽  
...  

None of the currently used diagnostic tools are efficient enough in diagnosing Mycobacterium tuberculosis (M.tb) infection in children. The study was aimed to identify cytokine biosignatures characterizing active and latent tuberculosis (TB) in children. Using a multiplex bead-based technology, we analyzed the levels of 53 Th17-related cytokines and inflammatory mediators in sera from 216 BCG-vaccinated children diagnosed with active TB (TB) or latent TB (LTBI) as well as uninfected controls (HC). Children with active TB, compared to HC children, showed reduced serum levels of IL-17A, MMP-2, OPN, PTX-3, and markedly elevated concentrations of APRIL/TNFSF13. IL-21, sCD40L, MMP-2, and IL-8 were significantly differentially expressed in the comparisons between groups: (1) HC versus TB and LTBI (jointly), and (2) TB versus LTBI. The panel consisting of APRIL/TNFSF13, sCD30/TNFRSF8, IFN-α2, IFN-γ, IL-2, sIL-6Rα, IL-8, IL-11, IL-29/IFN-λ1, LIGHT/TNFSF14, MMP-1, MMP-2, MMP-3, osteocalcin, osteopontin, TSLP, and TWEAK/TNFSF12 possessed a discriminatory potential for the differentiation between TB and LTBI children. Serum-based host biosignatures carry the potential to aid the diagnosis of childhood M.tb infections. The proposed panels of markers allow distinguishing not only children infected with M.tb from uninfected individuals but also children with active TB from those with latent TB.


Sign in / Sign up

Export Citation Format

Share Document