scholarly journals SELF-MONITORING OF BLOOD GLUCOSE WITH A NON-INVASIVE METHOD USING NEAR INFRARED SENSOR

2020 ◽  
Vol 11 (2) ◽  
pp. 111-121
Author(s):  
Rinda Nur Hidayati ◽  
Nur Hasanah Ahniar ◽  
Gita Rindang Lestari ◽  
Atika Hendryani ◽  
Faris Al Hakim

Diabetes mellitus or commonly called diabetes is a worldwide epidemic caused by chronic hyperglycemia. Simplify the blood glucose monitoring and easy to use is an essential part of diabetes management. Currently, the use of blood glucose meters conventional in clinical practice needs sufficient reliability. Therefore, self-monitoring of blood glucose with a non-invasive method was presented. A non-invasive blood glucose monitoring device was initially for information on glucose level measurements. A non-invasive method to determine the level of glucose by applying the physical properties of the absorption of the laser sensor that can produce a voltage change at various glucose levels. In this paper, a glucose monitoring module was fabricated with dimensions of 25x27x15 cm which has a minimum system, sensor, and LCD as a display of glucose levels. A minimum system to control the output of data digital value using microcontroller Android nano v.3. Experimentally, testing this module is by comparing the glucose monitoring modules that have been made with a gold standard. The result showed that non-invasive glucose monitoring is the potential for glucose level measurement a sensitivity, resolution, and accuracy of 0.86 mg/dL, 0.01 mg/dL, and 98.96%, respectively. The purposed module of glucose level monitoring offered simple testing for the rapid measurement of glucose levels.


2020 ◽  
Vol 32 (06) ◽  
pp. 2050043
Author(s):  
Keshava N. Acharya ◽  
M. G. Yashwanth Gowda ◽  
M. Vijay ◽  
S. Deepthi ◽  
S. Malathi ◽  
...  

Blood glucose monitoring systems (BGMSs) play a crucial role in health care applications. Invasive measurements are more accurate while non-invasive BGMS encourage self monitoring and reduce the cost of health care. Though multiple sensor data acquisition and suitable processing improve accuracy, self-monitoring becomes difficult in such non-invasive systems due to multiple signal acquisition. This paper investigates a non-invasive BGMS prototype that renders accurate measurements by statistically processing a single sensor data. The developed prototype is based on near-infrared (NIR) spectroscopy, which provides an electronic voltage that gets mapped to corresponding blood glucose level. This mapping is proposed using two different statistical regression approaches, parametric Bayesian Regression (BR) approach and the non-parametric Gaussian Process Regression (GPR) approach. Dataset is acquired from 33 subjects who visited Ramaiah Medical College Hospital, India. On each subject, voltage from the BGMS prototype and corresponding invasively obtained blood glucose level have been recorded. The BR and GPR approaches are trained with 75% of the data while the remaining 25% is used for testing. Test results show that BR approach renders root mean square error (RMSE) of 3.7[Formula: see text]mg/dL, while the mean absolute percentage error (MAPE) is around 2.5. The GPR with different radial basis function kernels revealed that a multiquadric kernel provides a lowest RMSE of 3.28[Formula: see text]mg/dL and lowest MAPE of 2.2, thus outperforming the parametric BR approach. Investigations also show that for a training data of less than 15 entries, BR renders better accuracy than the GPR approach.



Blood sugar in the body is called glucose and it is important that the amount of sugar in the blood is fairly maintained. The body has sugar and blood that is used to store energy in the body. Low or high blood sugar is dangerous to life if it is not treated. The fasting blood glucose level in the morning ranges between 70 mg/dL to 110 mg/dL, after the meal the blood glucose should be less than 140 mg/dL. This paper proposes a method that is best suited to detect blood glucose in the human body and avoid serious health issues by sending a message instantly to the respective number of the patient. Currently, in market Blood Glucose Monitoring (BGM) techniques are vigorous and painful as the blood sample is pricked from the finger that leads to the risk of infection, the strips that were being used were also costly. The solution to this problem statement is a design of non-invasive smart equipment for observing the blood glucose level. One non-invasive method is Red Laser (RL) BGM technique, that is very superior to the other invasive method and non-invasive techniques. Here the refractive index of the laser light is analyzed to determine the blood glucose level. Several tests and experimental results are generated to prove the proposed method is highly accurate.



Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6820
Author(s):  
Bushra Alsunaidi ◽  
Murad Althobaiti ◽  
Mahbubunnabi Tamal ◽  
Waleed Albaker ◽  
Ibraheem Al-Naib

The prevalence of diabetes is increasing globally. More than 690 million cases of diabetes are expected worldwide by 2045. Continuous blood glucose monitoring is essential to control the disease and avoid long-term complications. Diabetics suffer on a daily basis with the traditional glucose monitors currently in use, which are invasive, painful, and cost-intensive. Therefore, the demand for non-invasive, painless, economical, and reliable approaches to monitor glucose levels is increasing. Since the last decades, many glucose sensing technologies have been developed. Researchers and scientists have been working on the enhancement of these technologies to achieve better results. This paper provides an updated review of some of the pioneering non-invasive optical techniques for monitoring blood glucose levels that have been proposed in the last six years, including a summary of state-of-the-art error analysis and validation techniques.



2019 ◽  
Vol 11 (2) ◽  
pp. 110 ◽  
Author(s):  
V.V. Shapovalov ◽  
S.Y. Dudnikov ◽  
I.G. Zagorsky ◽  
B.S. Gurevich


Author(s):  
Nur Hasanah Ahniar

We present a medical records system and reminders to patients of the measurement results of non-invasive blood glucose levels. Measuring blood glucose levels is vital in avoiding potential adverse health effects like diabetes. Diabetes is a chronic metabolic disorder caused by a decrease in the pancreas to produce insulin. Generally, measuring blood glucose levels using the conventional method is injure the patient's finger. Currently, the non-invasive method was famous as one of the detections of blood glucose by applying the physical properties of laser absorption. In this paper, we use the photodiode as a detector, the LED as a sensor, and a signal conditioning circuit. The results showed that non-invasive glucose monitoring has the potential to measure glucose levels with sensitivity and linearity of 3.21 mg/dL and 98%, respectively. As a result of measuring the blood glucose levels of the subject was displayed on the LCD module was designed. We designed a simple application and medical record using Blynk applications and GUI MATLAB for recording the measurement results of blood glucose level. In the future, applications that have been developed can be used by doctors for monitoring the measurement of the blood glucose level and provide information to patients by mobile applications, sending an email or message the measurement results, the decision of a disease or not, and reminds the re-measurement time.



2019 ◽  
Vol 9 (15) ◽  
pp. 3046 ◽  
Author(s):  
Antonio Alarcón-Paredes ◽  
Victor Francisco-García ◽  
Iris P. Guzmán-Guzmán ◽  
Jessica Cantillo-Negrete ◽  
René E. Cuevas-Valencia ◽  
...  

Patients diagnosed with diabetes mellitus must monitor their blood glucose levels in order to control the glycaemia. Consequently, they must perform a capillary test at least three times per day and, besides that, a laboratory test once or twice per month. These standard methods pose difficulty for patients since they need to prick their finger in order to determine the glucose concentration, yielding discomfort and distress. In this paper, an Internet of Things (IoT)-based framework for non-invasive blood glucose monitoring is described. The system is based on Raspberry Pi Zero (RPi) energised with a power bank, using a visible laser beam and a Raspberry Pi Camera, all implemented in a glove. Data for the non-invasive monitoring is acquired by the RPi Zero taking a set of pictures of the user fingertip and computing their histograms. Generated data is processed by an artificial neural network (ANN) implemented on a Flask microservice using the Tensorflow libraries. In this paper, all measurements were performed in vivo and the obtained data was validated against laboratory blood tests by means of the mean absolute error (10.37%) and Clarke grid error (90.32% in zone A). Estimated glucose values can be harvested by an end device such as a smartphone for monitoring purposes.



2019 ◽  
Vol 8 (4) ◽  
pp. 11343-11345

Diabetes Mellitus is chronic disease affecting the people of all age groups around the globe. It is a very common disorder which causes high levels of sugar in the blood stream. High levels of blood glucose can damage the tiny blood vessels in our heart, eyes, kidneys and nervous system. Diabetes is fast gaining the status of a potential epidemic in India with more than 62 million diabetic individuals currently diagnosed with the disease. Invasive method is the most common method used to measure the blood glucose level which involves blood loss and pain. In the proposed proposal, a novel device has been designed to measure and monitor the blood glucose levels non-invasively. This device measures the blood glucose by spectroscopy technique using Red laser, in which the red laser shows better transmission and linearity when it passes through the blood. It measures the glucose value by detecting refractive index of transmitted light which is based on the principle of Snell’s law. The device will be further designed and fabricated in the form of a band to monitor blood glucose continuously.



2009 ◽  
Vol 3 (5) ◽  
pp. 1158-1165 ◽  
Author(s):  
Anna Chang ◽  
Alice Orth ◽  
Bryan Le ◽  
Perla Menchavez ◽  
Lupe Miller

Background: OneTouch® UltraVue™ is a new meter for self-monitoring of blood glucose that includes a color display, used-strip ejector, and no-button interface. The system uses an electrochemical biosensor technology based on glucose oxidase chemistry to detect glucose concentrations from 20 to 600 mg/dl (1.1 to 33.3 mmol/liter). Methods: Accuracy and reproducibility were evaluated over a wide range of glucose concentrations according to standard criteria. Clinical accuracy was assessed by health care providers (HCPs) in two studies and by diabetes patients in the second study. Reference glucose levels were determined by a YSI 2300 analyzer. Same-day reproducibility and day-to-day reproducibility were also evaluated. Results: In the accuracy studies, 99.7% and 98.7% of tests by HCPs and 97.0% of tests by patients were within ±15 mg/dl (±0.8 mmol/liter) of the YSI reference for blood glucose <75 mg/dl (<4.2 mmol/liter), and within ±20% for blood glucose ≥75 mg/dl (≥4.2 mmol/liter), respectively. Consensus error grid analysis showed that 99.7% and 95.3% of tests by HCPs and 97.0% of tests by patients fell within zone A (i.e., has no effect on clinical action); all other results were in zone B (i.e., altered clinical action, little or no effect on clinical outcome). In the reproducibility studies, the standard deviation was <1.5 mg/dl (<0.1 mmol/liter) for glucose concentrations <100 mg/dl (<5.6 mmol/liter), and the coefficient of variation was <2% for concentrations ≥100 mg/dl (≥5.6 mmol/liter). Conclusions: OneTouch UltraVue meets standard acceptability criteria for accuracy and reproducibility across a wide range of glucose concentrations. Its simple interface and lack of contact with used strips make it a viable option for older patients and their caregivers.





Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 662 ◽  
Author(s):  
Louis WY Liu ◽  
Abhishek Kandwal ◽  
Qingsha Cheng ◽  
Hongjian Shi ◽  
Igbe Tobore ◽  
...  

Non-invasive blood glucose monitoring at microwave frequencies is generally thought to be unreliable in terms of reproducibility of measurements. The failure to reproduce a blood glucose measurement from one experiment to another is in major part due to the unwanted interaction of leaky waves between the ambient environment and the blood glucose measuring device. In this work, we have overcome this problem by simply eliminating the leaky modes through the use of surface electromagnetic waves from a curved Goubau line. In the proposed methodology, a fixed volume of blood-filled skin tissue was first formed by vacuum suction and partially wound with a curved Goubau line which was coated with a 3 mm thick layer of gelatin/glycerin composite. Blood glucose levels were non-invasively determined using a network analyzer. At 4.5 GHz, a near-linear correlation exists between the measured S12 parameters and the blood glucose levels. The measured correlation was highly reproducible and consistent with the measurements obtained using the conventional invasive lancing approach. The findings of this work suggest the feasibility of non-invasive detection of left and right imbalances in the body.



Sign in / Sign up

Export Citation Format

Share Document