MODEL AND ALGORITHMS FOR SYNTHESIS OF BI-ASSIGNMENT

Author(s):  
S. Fedosenko Yu ◽  
K. Khandurin D

Формулируется математическая модель распределения между исполнителями пар невзаимозаменяемых работ. Вводится понятие «биназначение», ставится обобщающая классическую оптимизационная задача с минимаксным критерием и доказывается её труднорешаемость. Конструируются алгоритмы синтеза биназначений, приводятся численные примеры. A mathematical model of the distribution between the executors of pairs of non-interchangeable works is formulated. The concept of “bi-assignment” is introduced and a generalizing classical optimization problem with a minimax criterion is posed. Its intractability is proved. Algorithms for synthesizing of bi-assignment are constructed and numerical examples are given.

1994 ◽  
Vol 22 (3) ◽  
pp. 177-186 ◽  
Author(s):  
P. Burgholzer ◽  
O. Scherzer

In this paper a mathematical algorithm is studied to improve the deep-drawing quality of an aluminium sheet. The deep-drawing quality is usually expressed in terms of the normal anisotropie. In our mathematical model we use Taylor theory and ideal orientations to reformulate this problem as a nonlinear optimization problem for the normal anisotropie. Some numerical examples are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Y. G. Stoyan ◽  
A. M. Chugay

The paper considers a packing optimization problem of different spheres and cuboids into a cuboid of the minimal height. Translations and continuous rotations of cuboids are allowed. In the paper, we offer a way of construction of special functions (Φ-functions) describing how rotations can be dealt with. These functions permit us to construct the mathematical model of the problem as a classical mathematical programming problem. Basic characteristics of the mathematical model are investigated. When solving the problem, the characteristics allow us to apply a number of original and state-of-the-art efficient methods of local and global optimization. Numerical examples of packing from 20 to 300 geometric objects are given.


Author(s):  
Xuan Li ◽  
Bingkui Chen ◽  
Yawen Wang ◽  
Guohua Sun ◽  
Teik C. Lim

In this paper, the planar double-enveloping method is presented for the generation of tooth profiles of the internal gear pair for various applications, such as gerotors and gear reducers. The main characteristic of this method is the existence of double contact between one tooth pair such that the sealing property, the load capacity and the transmission precision can be significantly improved as compared to the conventional configuration by the single-enveloping theory. Firstly, the generation principle of the planar double-enveloping method is introduced. Based on the coordinate transformation and the envelope theory, the general mathematical model of the double-enveloping internal gear pair is presented. By using this model, users can directly design different geometrical shape profiles to obtain a double-enveloping internal gear pair with better meshing characteristics. Secondly, to validate the effectiveness of the proposed model, specific mathematical formulations of three double-enveloping internal gear pairs which apply circular, parabolic and elliptical curves as the generating curves are given. The equations of tooth profiles and meshing are derived and the composition of tooth profiles is analyzed. Finally, numerical examples are provided for an illustration.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ji-ting Qu ◽  
Hong-nan Li

A new optimal method is presented by combining the weight coefficient with the theory of force analogy method. Firstly, a new mathematical model of location index is proposed, which deals with the determination of a reasonable number of dampers according to values of the location index. Secondly, the optimal locations of dampers are given. It can be specific from stories to spans. Numerical examples are illustrated to verify the effectiveness and feasibility of the proposed mathematical model and optimal method. At last, several significant conclusions are given based on numerical results.


2019 ◽  
Vol 16 (05) ◽  
pp. 1840013 ◽  
Author(s):  
P. L. H. Ho ◽  
C. V. Le ◽  
T. Q. Chu

This paper presents a novel equilibrium formulation, that uses the cell-based smoothed method and conic programming, for limit and shakedown analysis of structures. The virtual strains are computed using straining cell-based smoothing technique based on elements of discretized mesh. Fictitious elastic stresses are also determined within the framework of finite element method (CS-FEM)-based Galerkin procedure, and equilibrium equations for residual stresses are satisfied in an average sense at every cell-based smoothing cell. All constrains are imposed at only one point in the smoothing domains, instead of Gauss points as in a standard FEM-based procedure. The resulting optimization problem is then handled using the highly efficient solvers. Various numerical examples are investigated, and obtained solutions are compared with available results in the literature.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 244 ◽  
Author(s):  
Vildan Yazıcı ◽  
Zahir Muradoğlu

This study examined the deformation problem of a plate system (formed side-by-side) composed of multi-structure plates. It obtained numerical approaches of the transmission conditions on the common border of plates that composed the system. Numerical examples were solved in different boundary and transmission conditions.


1984 ◽  
Vol 6 (2) ◽  
pp. 117-123 ◽  
Author(s):  
H. Schaeben

The concept of conditional ghost correction is introduced into the vector method of quantitative texture analysis. The mathematical model actually chosen here reduces the texture problem to one of quadratic programming. Thus, a well defined optimization problem has to be solved, the singular system of linear equations governing the correspondence between pole and orientation distribution being reduced to a set of equality constraints of the restated texture problem. This new mathematical approach in terms of the vector method reveals the modeling character of the solution of the texture problem provided by the vector method completely.


2017 ◽  
Vol 7 (1) ◽  
pp. 137-150
Author(s):  
Агапов ◽  
Aleksandr Agapov

For the first time the mathematical model of task optimization for this scheme of cutting logs, including the objective function and six equations of connection. The article discusses Pythagorean area of the logs. Therefore, the target function is represented as the sum of the cross-sectional areas of edging boards. Equation of the relationship represents the relationship of the diameter of the logs in the vertex end with the size of the resulting edging boards. This relationship is described through the use of the Pythagorean Theorem. Such a representation of the mathematical model of optimization task is considered a classic one. However, the solution of this mathematical model by the classic method is proved to be problematic. For the solution of the mathematical model we used the method of Lagrange multipliers. Solution algorithm to determine the optimal dimensions of the beams and side edging boards taking into account the width of cut is suggested. Using a numerical method, optimal dimensions of the beams and planks are determined, in which the objective function takes the maximum value. It turned out that with the increase of the width of the cut, thickness of the beam increases and the dimensions of the side edging boards reduce. Dimensions of the extreme side planks to increase the width of cut is reduced to a greater extent than the side boards, which are located closer to the center of the log. The algorithm for solving the optimization problem is recommended to use for calculation and preparation of sawing schedule in the design and operation of sawmill lines for timber production. When using the proposed algorithm for solving the optimization problem the output of lumber can be increased to 3-5 %.


Author(s):  
А. А. Чуйкина

Постановка задачи. Выбор наилучшего варианта трассы тепловой сети на начальном этапе проектирования является сложной многофакторной задачей, кроме того, ввиду отсутствия ряда необходимых конструктивных расчетов ее решение сопровождается ограниченностью набора исходных данных. Таким образом, становится актуальной разработка новой методики проектирования оптимальной трассы системы теплоснабжения, учитывающей качественные и количественные характеристики рассматриваемого объекта. Результаты. Разработана математическая модель обобщенного аддитивного векторного критерия оптимальности, учитывающая материалоемкость тепловой сети, ее надежность, время строительства, годовые тепловые потери, оборот теплоты и дисперсию температуры у потребителя. Предложен способ определения наилучшего варианта трассы тепловой сети на начальном этапе проектирования путем совместного решения задачи оптимизации методами векторной оптимизации и матричного обобщения. Отмечена целесообразность совместного применения методов попарного сравнения и векторной оптимизации при решении рассматриваемой задачи. Выводы. Важной характеристикой разработанной математической модели обобщенного критерия является возможность получения более точного решения рассматриваемой оптимизационной задачи при неравномерным распределении тепловой нагрузки посредством смещенной оценки дисперсии температуры у потребителей. Совместное применение методов матричного обобщения, попарного сравнения и векторной оптимизации позволяет повысить точность расчета при решении оптимизационной задачи выбора наилучшей трассы тепловой сети. Statement of the problem. Choosing the best option for the route of the thermal network at the initial stage of design is a complex multifactorial task, in addition, due to the lack of a number of necessary design calculations, its solution is accompanied by a limited set of initial data. Thus, it becomes relevant to develop a new methodology for designing the optimal route of the heat supply system, taking into account the qualitative and quantitative characteristics of the object under consideration. Results. A mathematical model of a generalized additive vector optimality criterion has been developed, taking into account the material consumption of the heat network, its reliability, construction time, annual thermal losses, heat turnover and temperature dispersion at the consumer. A method is proposed for determining the best option for the route of a thermal network at the initial design stage by jointly solving the optimization problem using vector optimization and matrix generalization methods. The expediency of the joint application of the methods of pairwise comparison and vector optimization in solving the problem under consideration is noted. Conclusions. An important characteristic of the developed mathematical model of the generalized criterion is the possibility of obtaining a more accurate solution to the optimization problem under consideration with an uneven distribution of the heat load by means of a biased estimate of the temperature variance among consumers. The combined application of the methods of matrix generalization, pairwise comparison and vector optimization can improve the accuracy of the calculation when solving the optimization problem of choosing the best route of the thermal network.


2021 ◽  
Vol 17 (3) ◽  
pp. 73-77
Author(s):  
NATALIA GRINEVA ◽  
◽  

The task of control from the position of mathematical tools application is discussed, economic statement and mathematical model of optimization problem are formulated, the sequential realization of the research aim - the mechanism of optimal portfolio management strategy formation - is presented. The results of dynamic optimization of decisions made at each step form the optimum law of the portfolio management. Scientific novelty of the study consists in the fact that the constructed portfolio takes into account the real incompleteness of the initial data on the processes of change in the yields of securities; there is no need to build a set of effective portfolios and indifference curves that characterize the risk appetite of investors; private characteristics are not used as the main criteria that determine the structure of the optimal portfolio of securities.


Sign in / Sign up

Export Citation Format

Share Document