Electric cars or fuel cell vehicles

It is proposed to evaluate the possibility of developing a fuel cell truck. The advantages and disadvantages of electric vehicles and fuel cell vehicles are analyzed. Keywords fuel cell truck; lithium cells; electric vehicle rate estimation

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 252
Author(s):  
Ioan-Sorin Sorlei ◽  
Nicu Bizon ◽  
Phatiphat Thounthong ◽  
Mihai Varlam ◽  
Elena Carcadea ◽  
...  

With the development of technologies in recent decades and the imposition of international standards to reduce greenhouse gas emissions, car manufacturers have turned their attention to new technologies related to electric/hybrid vehicles and electric fuel cell vehicles. This paper focuses on electric fuel cell vehicles, which optimally combine the fuel cell system with hybrid energy storage systems, represented by batteries and ultracapacitors, to meet the dynamic power demand required by the electric motor and auxiliary systems. This paper compares the latest proposed topologies for fuel cell electric vehicles and reveals the new technologies and DC/DC converters involved to generate up-to-date information for researchers and developers interested in this specialized field. From a software point of view, the latest energy management strategies are analyzed and compared with the reference strategies, taking into account performance indicators such as energy efficiency, hydrogen consumption and degradation of the subsystems involved, which is the main challenge for car developers. The advantages and disadvantages of three types of strategies (rule-based strategies, optimization-based strategies and learning-based strategies) are discussed. Thus, future software developers can focus on new control algorithms in the area of artificial intelligence developed to meet the challenges posed by new technologies for autonomous vehicles.


2020 ◽  
Vol 20 ◽  
pp. 85-89
Author(s):  
A. Gavrilyk ◽  
M. Lemishko

The development of electric vehicles in the near future is outlined, their general classification and problems of their use are given. The most common energy elements used to power electric traction electric motors are analyzed, their advantages and disadvantages are described. The analysis shows the most economical electric cars in 2018 and describes their traction and speed characteristics. The peculiarities of methodology for determining fuel economy for hybrid vehicles (PHEV - plugin hybrid electric vehicle) and for vehicles running on alternative fuel type (NGV-natural gas vehicle; FCV-fuel cell vehicle) are revealed and the possibility of its improvement is revealed. Methodological bases of estimation of fuel economy of electric vehicles are developed. This will allow potential buyers, owners or economists of the trucking companies to objectively estimate the equivalent fuel consumption and successfully choose one or the other brand of electric vehicle. An algorithm for determining the equivalent fuel economy of electric vehicles was developed and described taking into account the energy price policy for different countries of the world.It is concluded that lithiumion batteries have become the most widespread, as the feeding elements of electric vehicles. It is found that the equivalent fuel consumption is the most objective and informative, from the user's point of view, characterizing the use of electric vehicles compared to indicating the amount of energy (kWh) required to overcome 100 miles of travel. Using the proposed method, the equivalent fuel economy of these electric vehicles is calculated, the results are plotted against. It is established that for Ukraine, considering the cost of energy carriers, the use of electric vehicles is the most costeffective compared to other countries.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7945
Author(s):  
Guido Ala ◽  
Ilhami Colak ◽  
Gabriella Di Filippo ◽  
Rosario Miceli ◽  
Pietro Romano ◽  
...  

In recent years, the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently, the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug-in HEV (PHEV) electric cars, but hydrogen-based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the development of new infrastructural schemes. In the current panorama of EV, particular attention should be paid to hydrogen technology, i.e., FCEVs, which is potentially a valid alternative to BEVs and can also be hybrid (FCHEV) and plug-in hybrid (FCPHEV). Several sources cited show a positive trend of hydrogen in the transport sector, identifying a growing trend in the expansion of hydrogen infrastructure, although at this time, it is still at an early stage of development. At the moment, the cost of building the infrastructure is still high, but on the basis of medium/long-term scenarios it is clear that investments in hydrogen refueling stations will be profitable if the number of Fuel Cell vehicles increases. Conversely, the Fuel Cell vehicle market is hampered if there is no adequate infrastructure for hydrogen development. The opportunity to use Fuel Cells to store electrical energy is quite fascinating and bypasses some obstacles encountered with BEVs. The advantages are clear, since the charging times are reduced, compared to charging from an electric charging post, and the long-distance voyage is made easier, as the autonomy is much larger, i.e., the psycho-sociological anxiety is avoided. Therefore, the first part of the paper provides an overview of the current state of electric mobility in Portugal and the strategies adopted by the country. This is necessary to have a clear vision of how a new technology is accepted by the population and develops on the territory, that is the propensity of citizens to technological change. Subsequently, using current data on EV development and comparing information from recent years, this work aims to investigate the future prospects of FCEVs in Portugal by adopting a dynamic model called SERA (Scenario Evaluation and Regionalization Analysis), with which it is possible to identify the Portuguese districts and cities where an FC charging infrastructure is expected to be most beneficial. From the results obtained, the districts of Lisbon, Porto and Aveiro seem to be the most interested in adopting FC technology. This analysis aims to ensure a measured view of the credible development of this market segment.


2021 ◽  
Author(s):  
Ungki Lee ◽  
Sunghyun Jeon ◽  
Ikjin Lee

Abstract Shared autonomous vehicles (SAVs) encompassing autonomous driving technology and car-sharing service are expected to become an essential part of transportation system in the near future. Although many studies related to SAV system design and optimization have been conducted, most of them are focused on shared autonomous battery electric vehicle (SABEV) systems, which employ battery electric vehicles (BEVs) as SAVs. As fuel cell electric vehicles (FCEVs) emerge as alternative fuel vehicles along with BEVs, the need for research on shared autonomous fuel cell electric vehicle (SAFCEV) systems employing FCEVs as SAVs is increasing. Therefore, this study newly presents a design framework of SAFCEV system by developing an SAFCEV design model based on a proton-exchange membrane fuel cell (PEMFC) model. The test bed for SAV system design is Seoul, and optimization is conducted for SABEV and SAFCEV systems to minimize the total cost while satisfying the customer wait time constraint, and the optimization results of both systems are compared. From the results, it is verified that the SAFCEV system is feasible and the total cost of the SAFCEV system is even lower compared to the SABEV system. In addition, several observations on various operating environments of SABEV and SAFCEV systems are obtained from parametric studies.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012011
Author(s):  
V.K Bupesh Raja ◽  
Ignatius Raja ◽  
Rahul Kavvampally

Abstract The Automotive Industry has undergone a huge revolution – Electric Vehicles! Electric cars are growing fast and the demand for them is increasing all around the world, thanks to the more and improved choice, reduced prices, and enhancing battery technology. Introduced more than 100 years ago, electric vehicles have gone through a tremendous amount of advancement. This paper reviews the current major challenges faced by the Electric Vehicle Industry along with possible solutions to overcome them. Although electric vehicles have come a long way, the battery used in the vehicles needs to be further explored to harness maximum energy with a compact design. Electric vehicles should soon be able to compete with combustion engine vehicles in every aspect. Also, this paper reviews alternative materials for electrodes and batteries to make charging faster and reliable than ever. This paper envisages few concepts that could revolutionize Automobile Industry further in the future.


2021 ◽  
Vol 17 (5) ◽  
pp. 913-939
Author(s):  
Tat'yana S. REMIZOVA ◽  
Dmitrii B. KOSHELEV

Subject. The article reviews various transport electrification scenarios, which would help reduce the CO2 emissions and environmental threats. The environmental and economic security can also be affected if the State insufficiently understands the importance of electric vehicle development, their popularization. It is also crucial to encourage the consumption, develop the infrastructure, innovative projects, which reshape the power engineering structure. Objectives. We determine how global trends influence the production and integration of electric vehicles in Russia. We also evaluate the environmental and cost effectiveness of morot vehicle electrification, opportunities and trajectories for the electric vehicle development nationwide. Methods. The study involves methods used to summarize regulatory, empirical and theoretical data, and general and partial scientific methods and techniques, such as abstraction, analysis, analogy, etc. Results. The article shows the extent of electric transport development worldwide, and focuses on environmental issues and opportunities to reduce the carbon footprint by using electric vehicles and renewable energy sources. We point out opportunities, threats, prospects and disadvantages of the electric vehicle use in Russia. The article indicates how the use of electric cars can be developed in Russia, considering changes in the production structure and the generation of positive effects as much as possible. Conclusions. Currently, Russia evidently lags behind the global production and use of electric cars, without having a priority of the carbon footprint reduction. The strategy for the car segment advancement is underdeveloped. Suggested herein, the ideas for the electric car segment development are aimed to encourage the consumption, production, advancement of infrastructure and innovative projects, and ensure the environmental security of the country.


Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 65 ◽  
Author(s):  
Dmitry Pelegov ◽  
José Pontes

The growing popularity of electric vehicles is one of the main drivers of battery industry transformation. Words like “transport system decarbonization”, “electromobility”, and “environmental-friendly society” are very popular today, but questions remain as to how to measure electric vehicles’ adoption progress and how this transition changes the battery industry. This perspective paper provides a review of the electric cars and buses market, estimates the production volumes of some other electric vehicle types, and discusses the role of traction batteries in the global battery market. A simple estimation of the sales rate allows us to evaluate the prospects of electric vehicle adoption in leading countries. Finally, the application of the main battery chemistries is reviewed and topical issues to the research society are addressed and formulated.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jenn-Jiang Hwang ◽  
Jia-Sheng Hu ◽  
Chih-Hong Lin

The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery’s state of charge (SOC). This approach improves the quick loss problem of the system’s SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.


Author(s):  
Yiqing Yuan ◽  
Guoqiang Wu ◽  
Xiangyan He ◽  
Yanda Song ◽  
Xuewen Zhang

Despite great progress recently made on applications of in-wheel motors in electric vehicles, almost all production or near-production electric vehicles still utilize mechanical speed reduction systems for transferring torque from the traction motor to wheels for the purposes of torque augmentation and speed reduction. These systems in general fall into three categories, i.e. fixed ratio, stepped variable ratio, or continuously variable ratio. In China, most electric cars retrofitted from internal combustion engine propelled vehicle models use gear reduction systems of a fixed speed ratio, in order to minimize the time to market. Typically a conversion is made to the original 5-speed manual transmission by taking out a few unused gear sets. With the rapid growth in electric vehicle industry, some gearboxes of fixed speed have been engineered and they typically have a layshaft configuration. Most of them still do not come with a “park” gear due to a lack of understanding on customer’s needs. As an exception, a transmission of fixed speed ratio dedicated for electric vehicle applications has been developed at the Electric Vehicle R&D Center, Chinese Academy of Sciences (UCAS). Among electric vehicles announced by domestic vehicle manufacturers in China, some employ 5-speed manual transmissions (MTs) or automatic transmission (ATs) that typically found in traditional vehicles. From the driving convenience, transmission efficiency, or cost standpoints, these transmissions are, in general, not appropriate for applications in electric vehicles. The “misusage” of these transmissions has often something to do with their availability rather than suitability. A great deal of effort has been put into the research and development of automated mechanical transmissions (AMTs) in China to date. Significant progress has been made to the reduction of shift time, improvement of shift quality, and optimization of the mechanical components. Continuously variable transmission (CVT) is considered to be an important trend in drivetrain technology. However, the pulley-belt types of CVT commonly seen in traditional vehicles are not proper for electric vehicle applications. An EVT dedicated for electric vehicles is under development at UCAS, in which the power from an electric motor of dual-rotors is coupled by means of a planetary gear set, allowing continuous variable of the output speed. In summary, the electric vehicle drivetrain technology in China is undergoing rapid advances, which will impact the development of electric vehicle industry at home and abroad.


Sign in / Sign up

Export Citation Format

Share Document