Performance Evaluation of Adaptive Neuro-Fuzzy Inference System (ANFIS) In Predicting New Students (Case Study : UBP Karawang)

Author(s):  
Tatang Rohana ◽  
Bayu Priyatna

The process of admitting new students is an annual routine activity that occurs in a university. This activity is the starting point of the process of searching for prospective new students who meet the criteria expected by the college. One of the colleges that holds new student admissions every year is Buana Perjuangan University, Karawang. There have been several studies that have been conducted on predictions of new students by other researchers, but the results have not been very satisfying, especially problems with the level of accuracy and error. Research on ANFIS studies to predict new students as a solution to the problem of accuracy. This study uses two ANFIS models, namely Backpropagation and Hybrid techniques. The application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in the predictions of new students at Buana Perjuangan University, Karawang was successful. Based on the results of training, the Backpropagation technique has an error rate of 0.0394 and the Hybrid technique has an error rate of 0.0662. Based on the predictive accuracy value that has been done, the Backpropagation technique has an accuracy of 4.8 for the value of Mean Absolute Deviation (MAD) and 0.156364623 for the value of Mean Absolute Percentage Error (MAPE). Meanwhile, based on the Mean Absolute Deviation (MAD) value, the Backpropagation technique has a value of 0.5 and 0.09516671 for the Mean Absolute Percentage Error (MAPE) value. So it can be concluded that the Hybrid technique has a better level of accuracy than the Backpropation technique in predicting the number of new students at the University of Buana Perjuangan Karawang

Author(s):  
Tatang Rohana Cucu

Abstract - The process of admitting new students is an annual routine activity that occurs in a university. This activity is the starting point of the process of searching for prospective new students who meet the criteria expected by the college. One of the colleges that holds new student admissions every year is Buana Perjuangan University, Karawang. There have been several studies that have been conducted on predictions of new students by other researchers, but the results have not been very satisfying, especially problems with the level of accuracy and error. Research on ANFIS studies to predict new students as a solution to the problem of accuracy. This study uses two ANFIS models, namely Backpropagation and Hybrid techniques. The application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in the predictions of new students at Buana Perjuangan University, Karawang was successful. Based on the results of training, the Backpropagation technique has an error rate of 0.0394 and the Hybrid technique has an error rate of 0.0662. Based on the predictive accuracy value that has been done, the Backpropagation technique has an accuracy of 4.8 for the value of Mean Absolute Deviation (MAD) and 0.156364623 for the value of Mean Absolute Percentage Error (MAPE). Meanwhile, based on the Mean Absolute Deviation (MAD) value, the Backpropagation technique has a value of 0.5 and 0.09516671 for the Mean Absolute Percentage Error (MAPE) value. So it can be concluded that the Hybrid technique has a better level of accuracy than the Backpropation technique in predicting the number of new students at the University of Buana Perjuangan Karawang.   Keywords: ANFIS, Backpropagation, Hybrid, Prediction


Author(s):  
Bambang Lareno

<p>Abstrak <br />Terdapat banyak algoritma yang dapat dipakai untuk memprediksi arus lalu lintas, namun belum diketahui algoritma manakah yang memiliki kinerja lebih akurat untuk lalu lintas di Indonesia. Algoritma-algoritma tersebut perlu diuji untuk mengetahui algoritma manakah yang memiliki kinerja lebih akurat. Metode yang diusulkan adalah metode perbandingan tingkat akurasi dari algoritma berbasis neural network yang bisa digunakan untuk prediksi data rentet waktu. Algoritma yang akan diuji adalah back Propagation Neural Network (BP-NN), Adaptive Neuro Fuzzy Inference System (ANFIS), Wavelet Neural Network (WNN), dan Evolving Neural Network (ENN), yang digunakan untuk memprediksi arus lalulintas. Masing-masing algoritma akan implementasikan dengan menggunakan MatLab 2009b. Pengukuran kinerja dilakukan dengan menghitung rata-rata error yang terjadi melalui besaran Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) dan Mean Absolute Deviation (MAD). Semakin kecil nilai dari masing-masing parameter kinerja ini menyatakan semakin dekat nilai prediksi dengan nilai sebenarnya. Dalam penelitian ini diketahui bahwa Algoritma ENN memprediksi arus lalu lintas dengan lebih akurat.</p>


Fuzzy Systems ◽  
2017 ◽  
pp. 1385-1395
Author(s):  
A. K. Verma ◽  
T. N. Singh ◽  
Sachin Maheshwar

Intelligent techniques are quickly gaining importance in the field of geophysics, mining and geology. In this chapter the significance of intelligent techniques like ANN and ANFIS for prediction of longitudinal wave velocity and its advantages over other conventional methods of computing have been discussed. Longitudinal wave measurement is an indicator of peak particle velocity during blasting in a mine and it is a significant factor to be predicted to minimize the damage caused by ground vibrations. Wave velocity measurements have wide applications in the different fields of geophysics, mining and geology. In this chapter, ANN and ANFIS models are designed to predict the longitudinal wave velocity of different rocks and correlation have been developed with fracture properties. The fracture roughness coefficient and physico-mechanical properties are taken as input parameters and longitudinal wave velocity as output parameters. The mean absolute percentage error for the Longitudinal wave velocity predicted by Adaptive Neuro Fuzzy Inference System has been found to be the least.


Author(s):  
A. K. Verma ◽  
T. N. Singh ◽  
Sachin Maheshwar

Intelligent techniques are quickly gaining importance in the field of geophysics, mining and geology. In this chapter the significance of intelligent techniques like ANN and ANFIS for prediction of longitudinal wave velocity and its advantages over other conventional methods of computing have been discussed. Longitudinal wave measurement is an indicator of peak particle velocity during blasting in a mine and it is a significant factor to be predicted to minimize the damage caused by ground vibrations. Wave velocity measurements have wide applications in the different fields of geophysics, mining and geology. In this chapter, ANN and ANFIS models are designed to predict the longitudinal wave velocity of different rocks and correlation have been developed with fracture properties. The fracture roughness coefficient and physico-mechanical properties are taken as input parameters and longitudinal wave velocity as output parameters. The mean absolute percentage error for the Longitudinal wave velocity predicted by Adaptive Neuro Fuzzy Inference System has been found to be the least.


Author(s):  
Obafemi Olatunji ◽  
Stephen Akinlabi ◽  
Nkosinathi Madushele ◽  
Paul Adedeji ◽  
Samuel Fatoba

Abstract This article applied a hybridized, adaptive neuro-fuzzy inference system ANFIS-genetic algorithm (GA-ANFIS) and ANFIS -Particle swarm optimization (PSO-ANFIS) to predict the HHV of biomass. The minimum input parameter for the prediction model is based on the proximate values of biomass which are fixed carbon (FC), ash content (A) and volatile matter (VM). The 214 data which cover a wide range of biomass classes were extracted from reliable literature for the training and testing of the models. The optimal results obtained based on each modelling algorithm were compared. The proposed algorithms were evaluated by statistical indices which are the Coefficient of Correlation (CC), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) estimated at 0.9189, 1.2369,7.4575 and 1.3560 respectively for PSO-ANFIS and 0.9088, 1.1200, 6.3960, 0.8895 respectively for GA-ANFIS. The GA showed exceptional ability to generalize in term of MAPE though at the expense of lesser CC which is obtained in the case of PSO. The reported indices showed that PSO-ANFIS and GA-ANFIS could be applied as an approach to the prediction of HHV based on proximate analysis instead of lengthy experiment procedures.


2020 ◽  
Vol 202 ◽  
pp. 14008
Author(s):  
Siska Ayu Widiana ◽  
Suryono Suryono ◽  
Budi Warsito

Food security is a problem that every country had, especially for poor and developing countries. To improve the food security one of the solutions that can be applied is to collaborate technology and agriculture such as greenhouse. The technology that is applied to greenhouse can produce plants with good quality. Good quality plant can be predicted with prediction on the plant seeds in order to develop the plants production just as we expected. Prediction on plant seeds is using the adaptive neuro fuzzy inference system (ANFIS) model which is a combination of fuzzy and neural network. ANFIS will process the data with high complexity and it will provide the prediction result with high accuracy. Plant seeds prediction is using 65 data which divided into two data, specifically 50 training data and 15 testing data. The prediction provides accurate result and will generate 14/15 x 100% = 93.3333% precision with Mean Absolute Deviation (MAD) is 64.3391 from 15 prediction data about 4.2893, Mean Absolute Percentage Error (MAPE) is 5.3485 from 15 prediction data about 0.35657, Mean Square Deviation (MSD) is 9.159 from 15 prediction data about 0.6106.


2018 ◽  
Vol 4 (1) ◽  
pp. 21-28
Author(s):  
Rayendra

To improve the graduation of Computer Literate Certified Professional (CLCP) competence test conducted by Competence Test of Information and Communication Technology (TUK-TIK) needs to be done continuous improvement by increasing try out competency test. Past values of the competency test can be used as modeling to predict the final score and the passing of the competency test. With the modeling can be predicted the passing of competency test participants through try out-try out done so that can be known weakness of candidate competency test from three units of CLCP competence. The modeling used to predict the final score and the passing of this competency test is the Adaptive Neuro Fuzzy Inference System (ANFIS) method. Used 20 past data of competency test participants with 6 criteria as input value from three CLCP competence units namely Word Processing, Spreadsheet, and Presentation. The resulting prediction is accurate enough with MAPE (Mean Absolute Percentage Error) value for each competency unit of 0.31492%, 0.284202%, and 0.267167%


2021 ◽  
Author(s):  
Sonal Bindal

&lt;p&gt;In the recent years, prediction modelling techniques have been widely used for modelling groundwater arsenic contamination. Determining the accuracy, performance and suitability of these different algorithms such as univariate regression (UR), fuzzy model, adaptive fuzzy regression (AFR), logistic regression (LR), adaptive neuro-fuzzy inference system (ANFIS), and hybrid random forest (HRF) models still remains a challenging task. The spatial data which are available at different scales with different cell sizes. In the current study we have tried to optimize the spatial resolution for best performance of the model selecting the best spatial resolution by testing various predictive algorithms. The model&amp;#8217;s performance was evaluated based of the values of determination coefficient (R&lt;sup&gt;2&lt;/sup&gt;), mean absolute percentage error (MAPE) and root mean square error (RMSE). The outcomes of the study indicate that using 100m &amp;#215; 100m spatial resolution gives best performance in most of the models. The results also state HRF model performs the best than the commonly used ANFIS and LR models.&lt;/p&gt;


2017 ◽  
Vol 18 (2) ◽  
pp. 450-459 ◽  
Author(s):  
Abbas Parsaie ◽  
Samad Ememgholizadeh ◽  
Amir Hamzeh Haghiabi ◽  
Amir Moradinejad

Abstract In this paper, the trap efficiency (TE) of retention dams was investigated using laboratory experiments. To map the relation between TE and involved parameters, artificial intelligence (AI) methods including artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were utilized. Results of experiments indicated that the range of TE varies between 30 and 98%; hence, this structure can be recommended to control sediment transport in watershed management plans. Experimental results showed that by increasing the longitudinal slope of streams, TE decreases. This finding was observed for Vf/Vs parameter, as well. By increasing the mean diameter grain size (D50) and specific gravity of sediments (Gs), TE increases. Results of all applied AI models demonstrated that all of them have suitable performance; however, the minimum data dispersivity was observed in SVM outcomes. It is notable that the best performance of transfer, membership and kernel functions were related to tansig, gaussmf and radial basis function (RBF) for ANN, SVM and ANFIS, respectively.


2015 ◽  
Vol 8 (1) ◽  
pp. 369-384 ◽  
Author(s):  
K. Ramesh ◽  
A. P. Kesarkar ◽  
J. Bhate ◽  
M. Venkat Ratnam ◽  
A. Jayaraman

Abstract. The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and ANFIS) has limited success.


Sign in / Sign up

Export Citation Format

Share Document