Long-term survival of influenza A viruses in aquatic invertebrate zoocultures

2021 ◽  
Vol 1 (3) ◽  
pp. 34-41
Author(s):  
S. L. Nesterchuk ◽  
◽  
V. A. Ostapenko ◽  

In experiments to infect aquatic invertebrates in the zooculture, we used influenza A viruses, namely, to infect crustaceans Daphnia magna Straus, 1826 – human influenza virus, Hong Kong strain 1569/79 (H3N2), and to infect molluscs Anodonta cygnea Linné, 1758 – influenza virus A birds, Strain Rostok 1/34 (Hav1Neq1) – the so-called true bird plague virus. As a result of a series of experiments, found that influenza A viruses persist in the water for no more than 3 days, while in the gills and mantle of molluscs the virus is isolated on chicken embryos for at least another 35 days after contact with virus-containing water (a total of 70 individuals were studied). From the body Daphnia magna, to isolate the human influenza A virus on chicken embryos was possible within 14 days after infection through water (examined 6,800 individuals), by the method of immunofluorescence the influenza virus was determined in the intestines of crustaceans during the entire period of observation – 70 days from the time of infection. Influenza A viruses do not have a harmful effect on crustaceans or molluscs, infected animals also develop and reproduce, as well as individuals of control groups. Interesting is the fact that we have established the possibility of the loss of agglutination of red blood cells of chickens as a result of the reproduction of the human influenza A virus in the body of invertebrate Daphnia magna, which indicates a change in the viral protein hemagglutinin. The use of aquatic invertebrate zooculture can help in the study of the circulation of influenza A viruses in nature, as well as in the study of the variability of influenza A viruses.

2009 ◽  
Vol 53 (10) ◽  
pp. 4457-4463 ◽  
Author(s):  
Yuki Furuse ◽  
Akira Suzuki ◽  
Hitoshi Oshitani

ABSTRACT Influenza A virus infects many species, and amantadine is used as an antiviral agent. Recently, a substantial increase in amantadine-resistant strains has been reported, most of which have a substitution at amino acid position 31 in the M2 gene. Understanding the mechanism responsible for the emergence and spread of antiviral resistance is important for developing a treatment protocol for seasonal influenza and for deciding on a policy for antiviral stockpiling for pandemic influenza. The present study was conducted to identify the existence of drug pressure on the emergence and spread of amantadine-resistant influenza A viruses. We analyzed data on more than 5,000 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine resistance (positions 26, 27, 30, and 31) among different hosts. The phylogenetic tree revealed that the emergence and spread of the drug-resistant M gene in different hosts and subtypes were independent and not through reassortment. For human influenza virus, positive selection was detected only at position 27. Selective pressures on the sites were not always higher for human influenza virus than for viruses of other hosts. Additionally, selective pressure on position 31 did not increase after the introduction of amantadine. Although there is a possibility of drug pressure on human influenza virus, we could not find positive pressure on position 31. Because the recent rapid increase in drug-resistant virus is associated with the substitution at position 31, the resistance may not be related to drug use.


2002 ◽  
Vol 76 (4) ◽  
pp. 1781-1786 ◽  
Author(s):  
Christoph Scholtissek ◽  
Jürgen Stech ◽  
Scott Krauss ◽  
Robert G. Webster

ABSTRACT To analyze the compatibility of avian influenza A virus hemagglutinins (HAs) and human influenza A virus matrix (M) proteins M1 and M2, we doubly infected Madin-Darby canine kidney cells with amantadine (1-aminoadamantane hydrochloride)-resistant human viruses and amantadine-sensitive avian strains. By using antisera against the human virus HAs and amantadine, we selected reassortants containing the human virus M gene and the avian virus HA gene. In our system, high virus yields and large, well-defined plaques indicated that the avian HAs and the human M gene products could cooperate effectively; low virus yields and small, turbid plaques indicated that cooperation was poor. The M gene products are among the primary components that determine the species specificities of influenza A viruses. Therefore, our system also indicated whether the avian HA genes effectively reassorted into the genome and replaced the HA gene of the prevailing human influenza A viruses. Most of the avian HAs that we tested efficiently cooperated with the M gene products of the early human A/PR/8/34 (H1N1) virus; however, the avian HAs did not effectively cooperate with the most recently isolated human virus that we tested, A/Nanchang/933/95 (H3N2). Cooperation between the avian HAs and the M proteins of the human A/Singapore/57 (H2N2) virus was moderate. These results suggest that the currently prevailing human influenza A viruses might have lost their ability to undergo antigenic shift and therefore are unable to form new pandemic viruses that contain an avian HA, a finding that is of great interest for pandemic planning.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Frank Y. K. Wong ◽  
Celeste Donato ◽  
Yi-Mo Deng ◽  
Don Teng ◽  
Naomi Komadina ◽  
...  

ABSTRACTGlobal swine populations infected with influenza A viruses pose a persistent pandemic risk. With the exception of a few countries, our understanding of the genetic diversity of swine influenza viruses is limited, hampering control measures and pandemic risk assessment. Here we report the genomic characteristics and evolutionary history of influenza A viruses isolated in Australia from 2012 to 2016 from two geographically isolated swine populations in the states of Queensland and Western Australia. Phylogenetic analysis with an expansive human and swine influenza virus data set comprising >40,000 sequences sampled globally revealed evidence of the pervasive introduction and long-term establishment of gene segments derived from several human influenza viruses of past seasons, including the H1N1/1977, H1N1/1995, H3N2/1968, and H3N2/2003, and the H1N1 2009 pandemic (H1N1pdm09) influenza A viruses, and a genotype that contained gene segments derived from the past three pandemics (1968, reemerged 1977, and 2009). Of the six human-derived gene lineages, only one, comprising two viruses isolated in Queensland during 2012, was closely related to swine viruses detected from other regions, indicating a previously undetected circulation of Australian swine lineages for approximately 3 to 44 years. Although the date of introduction of these lineages into Australian swine populations could not be accurately ascertained, we found evidence of sustained transmission of two lineages in swine from 2012 to 2016. The continued detection of human-origin influenza virus lineages in swine over several decades with little or unpredictable antigenic drift indicates that isolated swine populations can act as antigenic archives of human influenza viruses, raising the risk of reemergence in humans when sufficient susceptible populations arise.IMPORTANCEWe describe the evolutionary origins and antigenic properties of influenza A viruses isolated from two separate Australian swine populations from 2012 to 2016, showing that these viruses are distinct from each other and from those isolated from swine globally. Whole-genome sequencing of virus isolates revealed a high genotypic diversity that had been generated exclusively through the introduction and establishment of human influenza viruses that circulated in past seasons. We detected six reassortants with gene segments derived from human H1N1/H1N1pdm09 and various human H3N2 viruses that circulated during various periods since 1968. We also found that these swine viruses were not related to swine viruses collected elsewhere, indicating independent circulation. The detection of unique lineages and genotypes in Australia suggests that isolated swine populations that are sufficiently large can sustain influenza virus for extensive periods; we show direct evidence of a sustained transmission for at least 4 years between 2012 and 2016.


2015 ◽  
Vol 89 (21) ◽  
pp. 10879-10890 ◽  
Author(s):  
Judith Verhelst ◽  
Jan Spitaels ◽  
Cindy Nürnberger ◽  
Dorien De Vlieger ◽  
Tine Ysenbaert ◽  
...  

ABSTRACTThe interferon-inducedMx1gene is an important part of the mammalian defense against influenza viruses.Mus musculusMx1 inhibits influenza A virus replication and transcription by suppressing the polymerase activity of viral ribonucleoproteins (vRNPs). Here, we compared the anti-influenza virus activity of Mx1 fromMus musculusA2G with that of its ortholog fromMus spretus. We found that the antiviral activity ofM. spretusMx1 was less potent than that ofM. musculusMx1. Comparison of theM. musculusMx1 sequence with theM. spretusMx1 sequence revealed 25 amino acid differences, over half of which were present in the GTPase domain and 2 of which were present in loop L4. However, thein vitroGTPase activity of Mx1 from the two mouse species was similar. Replacement of one of the residues in loop L4 inM. spretusMx1 by the corresponding residue of A2G Mx1 increased its antiviral activity. We also show that deletion of loop L4 prevented the binding of Mx1 to influenza A virus nucleoprotein and, hence, abolished the antiviral activity of mouse Mx1. These results indicate that loop L4 of mouse Mx1 is a determinant of antiviral activity. Our findings suggest that Mx proteins from different mammals use a common mechanism to inhibit influenza A viruses.IMPORTANCEMx proteins are evolutionarily conserved in vertebrates and inhibit a wide range of viruses. Still, the exact details of their antiviral mechanisms remain largely unknown. Functional comparison of theMxgenes from two species that diverged relatively recently in evolution can provide novel insights into these mechanisms. We show that bothMus musculusA2G Mx1 andMus spretusMx1 target the influenza virus nucleoprotein. We also found that loop L4 in mouse Mx1 is crucial for its antiviral activity, as was recently reported for primate MxA. This indicates that human and mouse Mx proteins, which have diverged by 75 million years of evolution, recognize and inhibit influenza A viruses by a common mechanism.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Haili Zhang ◽  
Zhenyu Zhang ◽  
Yujie Wang ◽  
Meiyue Wang ◽  
Xuefeng Wang ◽  
...  

ABSTRACTThe polymerase of the influenza virus is part of the key machinery necessary for viral replication. However, the avian influenza virus polymerase is restricted in mammalian cells. The cellular protein ANP32A has been recently found to interact with viral polymerase and to influence both polymerase activity and interspecies restriction. We report here that either human ANP32A or ANP32B is indispensable for human influenza A virus RNA replication. The contribution of huANP32B is equal to that of huANP32A, and together they play a fundamental role in the activity of human influenza A virus polymerase, while neither human ANP32A nor ANP32B supports the activity of avian viral polymerase. Interestingly, we found that avian ANP32B was naturally inactive, leaving avian ANP32A alone to support viral replication. Two amino acid mutations at sites 129 to 130 in chicken ANP32B lead to the loss of support of viral replication and weak interaction with the viral polymerase complex, and these amino acids are also crucial in the maintenance of viral polymerase activity in other ANP32 proteins. Our findings strongly support ANP32A and ANP32B as key factors for both virus replication and adaptation.IMPORTANCEThe key host factors involved in the influenza A viral polymerase activity and RNA replication remain largely unknown. We provide evidence here that ANP32A and ANP32B from different species are powerful factors in the maintenance of viral polymerase activity. Human ANP32A and ANP32B contribute equally to support human influenza viral RNA replication. However, unlike avian ANP32A, the avian ANP32B is evolutionarily nonfunctional in supporting viral replication because of a mutation at sites 129 and 130. These sites play an important role in ANP32A/ANP32B and viral polymerase interaction and therefore determine viral replication, suggesting a novel interface as a potential target for the development of anti-influenza strategies.


2022 ◽  
Author(s):  
J. Brian Kimble ◽  
Meghan Wymore Brand ◽  
Bryan S. Kaplan ◽  
Phillip Gauger ◽  
Elizabeth M. Coyle ◽  
...  

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and strains contained in vaccines may cause loss in efficacy. Whole inactivated virus (WIV) vaccines with adjuvant utilized by the swine industry are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil in water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) five weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD affected pigs exhibited a 2-fold increase in lung lesions, while VAERD affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. Importance We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed towards a conserved epitope on the HA stalk induced by an oil-in-water adjuvanted whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines to humans and the need to consider VAERD when designing and evaluating vaccine strategies.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Irina V. Alymova ◽  
Jonathan A. McCullers ◽  
Ram P. Kamal ◽  
Peter Vogel ◽  
Amanda M. Green ◽  
...  

2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Brian R. Wasik ◽  
Ian E. H. Voorhees ◽  
Karen N. Barnard ◽  
Brynn K. Alford-Lawrence ◽  
Wendy S. Weichert ◽  
...  

ABSTRACT Influenza A viruses have regularly jumped to new host species to cause epidemics or pandemics, an evolutionary process that involves variation in the viral traits necessary to overcome host barriers and facilitate transmission. Mice are not a natural host for influenza virus but are frequently used as models in studies of pathogenesis, often after multiple passages to achieve higher viral titers that result in clinical disease such as weight loss or death. Here, we examine the processes of influenza A virus infection and evolution in mice by comparing single nucleotide variations of a human H1N1 pandemic virus, a seasonal H3N2 virus, and an H3N2 canine influenza virus during experimental passage. We also compared replication and sequence variation in wild-type mice expressing N-glycolylneuraminic acid (Neu5Gc) with those seen in mice expressing only N-acetylneuraminic acid (Neu5Ac). Viruses derived from plasmids were propagated in MDCK cells and then passaged in mice up to four times. Full-genome deep sequencing of the plasmids, cultured viruses, and viruses from mice at various passages revealed only small numbers of mutational changes. The H3N2 canine influenza virus showed increases in frequency of sporadic mutations in the PB2, PA, and NA segments. The H1N1 pandemic virus grew well in mice, and while it exhibited the maintenance of some minority mutations, there was no clear evidence for adaptive evolution. The H3N2 seasonal virus did not establish in the mice. Finally, there were no clear sequence differences associated with the presence or absence of Neu5Gc. IMPORTANCE Mice are commonly used as a model to study the growth and virulence of influenza A viruses in mammals but are not a natural host and have distinct sialic acid receptor profiles compared to humans. Using experimental infections with different subtypes of influenza A virus derived from different hosts, we found that evolution of influenza A virus in mice did not necessarily proceed through the linear accumulation of host-adaptive mutations, that there was variation in the patterns of mutations detected in each repetition, and that the mutation dynamics depended on the virus examined. In addition, variation in the viral receptor, sialic acid, did not affect influenza virus evolution in this model. Overall, our results show that while mice provide a useful animal model for influenza virus pathology, host passage evolution will vary depending on the specific virus tested.


1965 ◽  
Vol 63 (4) ◽  
pp. 479-490 ◽  
Author(s):  
G. C. Schild ◽  
C. H. Stuart-Harris

Determinations were made of the age distribution of antibody to swine virus and representatives of the various families of human influenza A virus in 1961–62 collections of human sera and paired sera from forty individuals taken in 1952 and 1963:(a) The existence of cohorts of the population, each with a dominant antibody type related to strains of virus first encountered in childhood, was confirmed.(b) The basic epidemiological pattern was similar to that previously detected in 1954. However, it seemed that antibody to swine virus had been reinforced but not antibody to A and A1 strains.(c) Neutralizing and HI antibodies to A/Equine/Miami/63 virus were detected only in the sera of older people (65 years or over) collected in 1964. No antibodies were found to A/Equine/Prague/56 or two duck viruses.(d) Relatively constant levels of antibody to A, A1 and A 2 viruses were present in sera from aged persons but antibody to swine virus diminished with age. This could be attributed to a lack of swine antibody in the older females.


Sign in / Sign up

Export Citation Format

Share Document