The South Asia Stability-Instability Paradox Under the Nuclear Shadow

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
David Brewster

Cross-border clashes between India and Pakistan in 2019, and between India and China in 2020, have placed a spotlight on theories about the stabilising and destabilising effects of nuclear weapons. The experience of the India-Pakistan dyad, and now that within the India-China dyad, is that despite the apparent risks of nuclear escalation, nuclear-armed adversaries may still be prepared to engage in limited, but deadly conventional or sub-conventional conflicts under the nuclear shadow. This paper uses stability-instability paradox theory to explain the mechanics of this apparent paradox and to discuss how these relationships may evolve in future.

2019 ◽  
Vol 30 (5) ◽  
pp. 589-614
Author(s):  
Zafar Khan

Purpose This paper aims to elaborate in a greater detail about how to manage and eventually help resolve outstanding issues, including the core issue of Kashmir between nuclear India and Pakistan. In doing so, this paper elaborates various innovative measures that could be applicable to South Asian nuclear environment that in turn could assist the South Asian nuclear leadership in understanding and managing the fragility of South Asian nuclear deterrence. Design/methodology/approach Innovatively, this research paper looks at the South Asian nuclear issues at three levels of analysis – understanding the prevailing dynamics of nuclear revolution and improved means of communications and promoting deterrence stability in South Asia. All three levels may be more needed than ever before in the wake of the arrival of nuclear weapons for a broader Southern Asian region. Findings This paper finds out that although nuclear weapons have become a reality in South Asia and these deadly weapons have prevented major wars between India and Pakistan, nuclear weapons have not prevented the crises between India and Pakistan. Therefore, both India and Pakistan have confronted a number of crises. The paper finds out that any serious crisis between India and Pakistan could further undermine the credibility of existing confidence-building measures and the same could escalate from military to nuclear level. Absent from immediate measures undertaken by the South Asian security leadership, nuclear weapons may not help prevent the war between India and Pakistan at the sub-conventional level, this paper finds out. Originality/value By explaining innovative measures at the three level of analysis, this papers adds to the existing literature in understanding the behavior of South Asian security leadership and how these measures could best bring positive results in preventing a major crisis that potentially bears the risk of escalation to nuclear level.


2020 ◽  
Vol 62 (1-2) ◽  
pp. 69-108
Author(s):  
S. Y. Kondratyuk ◽  
D. K. Upreti ◽  
G. K. Mishra ◽  
S. Nayaka ◽  
K. K. Ingle ◽  
...  

Eight species, new for science, i.e.: Lobothallia gangwondoana S. Y. Kondr., J.-J. Woo et J.-S. Hur and Phyllopsora dodongensis S. Y. Kondr. et J.-S. Hur from South Korea, Eastern Asia, Ioplaca rinodinoides S. Y. Kondr., K. K. Ingle, D. K. Upreti et S. Nayaka, Letrouitia assamana S. Y. Kondr., G. K. Mishra et D. K. Upreti, and Rusavskia indochinensis S. Y. Kondr., D. K. Upreti et S. Nayaka from India and China, South Asia, Caloplaca orloviana S. Y. Kondr. and Rusavskia drevlyanica S. Y. Kondr. et O. O. Orlov from Ukraine, Eastern Europe, as well as Xanthoria ibizaensis S. Y. Kondr. et A. S. Kondr. from Ibiza Island, Spain, Mediterranean Europe, are described, illustrated and compared with closely related taxa. Fominiella tenerifensis S. Y. Kondr., Kärnefelt, A. Thell et Feuerer is for the first time recorded from Mediterranean Europe, Huriella loekoesiana S. Y. Kondr. et Upreti is provided from Russia for the first time, and H. pohangensis S. Y. Kondr., L. Lőkös et J.-S. Hur for the first time from China, Phoma candelariellae Z. Kocakaya et Halıcı is new to Ukraine, and Staurothele frustulenta Vain. is recorded from the Forest Zone of Ukraine for the first time. Twelve new combinations, i.e.: Bryostigma apotheciorum (for Sphaeria apotheciorum A. Massal.), Bryostigma biatoricola (for Arthonia biatoricola Ihlen et Owe-Larss.), Bryostigma dokdoense (for Arthonia dokdoensis S. Y. Kondr., L. Lőkös, B. G. Lee, J.-J. Woo et J.-S. Hur), Bryostigma epiphyscium (for Arthonia epiphyscia Nyl.), Bryostigma lobariellae (for Arthonia lobariellae Etayo), Bryostigma lapidicola (for Lecidea lapidicola Taylor), Bryostigma molendoi (for Tichothecium molendoi Heufl. ex Arnold), Bryostigma neglectulum (for Arthonia neglectula Nyl.), Bryostigma parietinarium (for Arthonia parietinaria Hafellner et Fleischhacker), Bryostigma peltigerinum (for Arthonia vagans var. peltigerina Almq.), Bryostigma phaeophysciae (for Arthonia phaeophysciae Grube et Matzer), Bryostigma stereocaulinum (for Arthonia nephromiaria var. stereocaulina Ohlert), are proposed based on results of combined phylogenetic analysis based on mtSSU and RPB2 gene sequences. Thirty-one new combinations for members of the genus Polyozosia (i.e.: Polyozosia actophila (for Lecanora actophila Wedd.), Polyozosia agardhiana (for Lecanora agardhiana Ach.), Polyozosia altunica (for Myriolecis altunica R. Mamut et A. Abbas), Polyozosia antiqua (for Lecanora antiqua J. R. Laundon), Polyozosia bandolensis (for Lecanora bandolensis B. de Lesd.), Polyozosia behringii (for Lecanora behringii Nyl.), Polyozosia caesioalutacea (for Lecanora caesioalutacea H. Magn.), Polyozosia carlottiana (for Lecanora carlottiana C. J. Lewis et Śliwa), Polyozosia congesta (for Lecanora congesta Clauzade et Vězda), Polyozosia eurycarpa (for Lecanora eurycarpa Poelt, Leuckert et Cl. Roux), Polyozosia expectans (Lecanora expectans Darb.), Polyozosia flowersiana (Lecanora flowersiana H. Magn.), Polyozosia fugiens (for Lecanora fugiens Nyl.), Polyozosia invadens (for Lecanora invadens H. Magn.), Polyozosia juniperina (for Lecanora juniperina Śliwa), Polyozosia latzelii (for Lecanora latzelii Zahlbr.), Polyozosia liguriensis (for Lecanora liguriensis B. de Lesd.), Polyozosia massei (for Myriolecis massei M. Bertrand et J.-Y. Monnat), Polyozosia mons-nivis (for Lecanora mons-nivis Darb.), Polyozosia oyensis (for Lecanora oyensis M.-P. Bertrand et Cl. Roux), Polyozosia percrenata (for Lecanora percrenata H. Magn.), Polyozosia persimilis (for Lecanora hagenii subsp. persimilis Th. Fr.), Polyozosia poeltiana (for Lecanora poeltiana Clauzade et Cl. Roux), Polyozosia prominens (for Lecanora prominens Clauzade et Vězda), Polyozosia prophetae-eliae (for Lecanora prophetae-eliae Sipman), Polyozosia salina (for Lecanora salina H. Magn.), Polyozosia schofieldii (for Lecanora schofieldii Brodo), Polyozosia sverdrupiana (for Lecanora sverdrupiana Øvstedal), Polyozosia torrida (for Lecanora torrida Vain.), Polyozosia wetmorei (for Lecanora wetmorei Śliwa), Polyozosia zosterae (for Lecanora subfusca? zosterae Ach.)) are proposed.


2019 ◽  
Author(s):  
Ali Imran

This study thoroughly shed light on the China's Belt-Road Initiative towards South Asia with particular focus on China-Pakistan Economic Corridor. The study find the number of issue in completion of BRI/CPEC in the South Asia.


2012 ◽  
Vol 25 (20) ◽  
pp. 6930-6941 ◽  
Author(s):  
Xia Qu ◽  
Gang Huang

Abstract The tropical Indian Ocean (TIO)’s influence on the South Asia high (SAH)’s intensity experiences a decadal change in the late 1970s; after (before) the decadal shift, the influence is significant (insignificant). The present study investigates the role of tropospheric temperature in relaying the impact of sea surface temperature (SST) to the SAH and the change in the TIO’s influence. During the two epochs, the local tropospheric temperature responses to the TIO warming are distinct—more significant during the second epoch. It is inferred that this change may be responsible for the strengthening of the TIO’s influence on the SAH. Encouragingly, the ensemble simulations accurately capture the time of the decadal change, indicating that the enhanced influence is attributed to the SST forcing. There are two possible reasons for the change in the TIO–SAH relationship. The first reason is the change in the locations of the SST anomalies in the TIO. During the second epoch, positive SST anomalies lie in the Indian Ocean warm pool. Through the background vigorous convection and moist adjustment, the SST anomalies affect largely the tropospheric temperature and thus the SAH. The second reason is the decadal change in mean SST and the SST variability. During the recent decades, both the background SST and the variability of the TIO SST increase, which enhance the influence of the SST anomalies on the atmosphere. The influence of the remote oceanic forcing on the enhanced TIO–SAH relationship and its comparison with the contribution of the TIO SST are also discussed.


2021 ◽  
Author(s):  
Hagar ElDidi ◽  
Chloe van Biljon ◽  
Muzna Fatima Alvi ◽  
Claudia Ringler ◽  
Nazmun Ratna ◽  
...  

2015 ◽  
Vol 19 (12) ◽  
pp. 4783-4810 ◽  
Author(s):  
C. Mathison ◽  
A. J. Wiltshire ◽  
P. Falloon ◽  
A. J. Challinor

Abstract. South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960–2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990–2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow could mean additional water resources for irrigation, the largest usage of water in this region, but has implications in terms of inundation risk. These projected increases could be more than countered by changes in demand due to depleted groundwater, increases in domestic use or expansion of water intense industries. Including missing hydrological processes in the model would make these projections more robust but could also change the sign of the projections.


Sign in / Sign up

Export Citation Format

Share Document