scholarly journals A computer-based simulation and evaluation: Applying an automatic sprinkler system for extinguishing scooter fires in arcade areas

2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
Sheng-Chieh Lee ◽  
◽  
Ching-Yuan Lin ◽  
Ying-Ji Chuang ◽  
Yuan-Shang Lin ◽  
...  

In Taiwan, arcade buildings function as areas for parking scooters, spaces for markets, and walkways for pedestrians. In recent decades, arcade fires have caused many cases of serious casualties due to the likely direction of fire that spreads from the first floor up, which hinders the evacuation routes. The majority of fire prevention research has focused on confined spaces or rooms instead of arcade areas. Specifically, the controlling of fire spreads that are caused by scooters in arcade areas has been rarely discussed. The variables of spaces, Response Time Index, and sprinkler activation temperatures are modeled in five fire scenarios with the Fire Dynamics Simulator software to simulate the real arcade fires in this paper. The results show that (1) setting an automatic sprinkler system can effectively suppress the arcade fires, (2) the quick response sprinkler RTI≦50 is the most effective type, and the result is similar to RTI=25, and (3) the sprinkler settings with either 2.3 meters or 2.6 meters do not have significant effects on heat release rates.

2021 ◽  
Vol 30 (1) ◽  
pp. 42-53
Author(s):  
L. T. Tanklevskiy ◽  
A. A. Tarantsev ◽  
O. A. Zybina ◽  
I. A. Babikov

Introduction. Сases of ineffective activation of automatic sprinkler fire-fighting systems (AFFS), designed pursuant to current standards, have made it necessary to address the following three issues: a) identification of reasons for ineffective activation; b) examination of AFFS systems to ensure their successful activation in case of fire; c) making a list of recommendations for AFFS designers. These issues can be resolved with reference to Appendix B to new SP (Construction Regulations) 485.13130.2020.Maximal critical height of sprinkler placement. Models of fire development were used to design the roof height limit and the AFFS bulb heating time. If the ceiling height exceeds the limit value, sprinklers cannot be activated in a timely manner. This leads to delays in the AFFS activation, and, as a result, the fire area exceeds the one safeguarded by the sprinkler.Acceptable sprinkler height. The analysis of fire scenarios and bulb heating models allows to more accurately project the feasibility of timely AFFS activation. This, in turn, allows to solve the three above listed problems.Using a differential heat detector to activate sprinklers. If it is established that the use of the AFFS, activating sprinklers by means of thermal destruction of a bulb, is ineffective in a given room, the feasibility of forced AFFS activation using a differential heat detector responding to the temperature rise in a room may be considered. The ratios, thus obtained, are applied to identify the acceptable height of premises protected by the AFFS equipped with such detectors. Problem solutions, including the identification of the reason for the ineffective operation of the AFFS, examination of the AFFS in operation, and provision of recommendations to designers, are demonstrated using the exhibition hall as an example.Conclusions. The above-mentioned problems are resolvable with the help of Appendix B to new Construction Regulations 485.13130.2020 and the above models.


2020 ◽  
Vol 10 (9) ◽  
pp. 3099
Author(s):  
Zhiwei Yu ◽  
Chen Lu ◽  
Yiqin Zhong

With the rapid development of architectural technology, long-span structures have been widely used due to their vast interior space and beautiful architectural composition. Due to the characteristics and high costs of coating materials on large steel structures, fire resistance designs for these kinds of structures have become more and more important. This paper presents comprehensive case analyses of the fire performance of single-layer cylindrical reticulated shells. Nonuniform fire temperature fields of single-layer cylindrical reticulated shells in different fire scenarios were generated using a Fire Dynamics Simulator (FDS). The influences of different parameters on the air temperature field during a fire in a reticulated shell structure were analyzed. A Finite Element (FE) model was developed using the FE software ABAQUS to model the structural behavior of single-layer cylindrical reticulated shells in different fire scenarios. The effects of various parameters on the responses of single-layer cylindrical reticulated shells during a fire were investigated. Using the results from the performance-based analysis in this research, we propose some recommendations for fire resistance designs for single-layer cylindrical reticulated shells.


Author(s):  
Vancho Adjiski ◽  
Zoran Despodov

The purpose of this chapter is to develop a methodology that will contribute in locating optimal evacuation routes in case of fire that are based on minimal carbon monoxide (CO) exposure during the evacuation procedures. The proposed methodology is tested using simulated fire scenarios from which CO concentration over time curve is extracted from all available evacuation routes and presented in a weighted form based on the accumulating effect of CO inhalation in the form of fractional effective dose (FED). The safety limits of the FED model on which the optimization process is based are determined using a model for the prediction of carboxyhemoglobin (COHb) levels in human blood. The COHb model is associated with predicted clinical symptoms that are the basis for determining the level of incapacitation at which the mineworkers are incapable of completing their evacuation. Also in the process of improving the fire risk analysis, the proposed methodology enables the development of evacuation plans that are based on the results of modeled fire scenarios combined together with the results of the anticipated hazards generated by CO inhalation. The results presented in this chapter indicate a more precise approach in the process of planning the evacuation system inside the underground mines.


2020 ◽  
Vol 10 (10) ◽  
pp. 3380 ◽  
Author(s):  
Florencio Fernández-Alaiz ◽  
Ana Maria Castañón ◽  
Fernando Gómez-Fernández ◽  
Marc Bascompta

Fires in underground spaces are especially relevant due to their potential mortality. However, there is not much research in real-scale spaces done so far. In this study, several fire scenarios were analyzed in an underground drift, taking into account the main environmental variables: airflow, temperature, oxygen, and pollutants. The behavior before and after the fire load was determined, as well as the evolution of the fire over time throughout the drift and its cross-section, finding important trends of the fire based on the airflow–fuel load ratio. Furthermore, the five most representative scenarios were modeled using the fire dynamics simulator (FDS). Results obtained in the simulations, with the adjusted parameters, display a good correlation between simulated and experimental values, being able to extrapolate these values to know the performance of potential fires in other underground spaces or mines. The outcomes could also be a very useful tool to study the effectiveness of possible emergency measures or the potential impact of a fire in this type of environments.


2013 ◽  
Vol 405-408 ◽  
pp. 1861-1864
Author(s):  
Ruo Jun Wang ◽  
Bin Jiang ◽  
Yan Ying Xu

Fire prevention system of subway station plays an important role in ensuring passenger safety. The Shenyang Youth Street subway station fire prevention system safety was studied, applying performance-based fire protection design analysis method, using of FDS simulation software on the station fire prevention safety system for the calculation and analysis. Three working conditions were set when subway fire happens. Fire smoke flow characteristics and the distribution of temperature, CO concentration and visibility were analyzed and compared. The results show that the automatic sprinkler system and smoke control system have great effect on the preventing spread of fire. In the automatic sprinkler system and smoke control system conditions, fire hazards have not reached the standards of passengers tolerance.


2013 ◽  
Vol 300-301 ◽  
pp. 542-546
Author(s):  
Jie Tong Zou ◽  
Guan Wei Huang ◽  
Rui Feng Zheng

The unmanned aerial vehicle (UAV) has the advantage of light weight, small size, and better dynamic performance. Conventional UAVs are not well suited for use in confined spaces, such as small passageways or indoor halls, e.t.c. The multi-rotor copters have the vertical take-off and landing (VTOL) ability for indoor flight. The most popular research topics for multi-rotor copters are Quad-copter and Hexa-copter. The objective of this research is to develop a dynamic model for hexa-rotor aerial robot. The dynamic model of the hexa-rotor aerial robot had been studied in this research. The PID control algorithm was used to control the hexa-copter. We used the Matlab software to help us to tune the PID control parameters for quick response and minimizing the fluctuation. From the simulation results, the hexa-copter could make a stable hovering on the target position and return to the stable hovering position and attitude after one motor or one propeller failure.


Sign in / Sign up

Export Citation Format

Share Document