scholarly journals Crop identification and disease classification using traditional machine learning and deep learning approaches

Author(s):  
Aravind Krishnaswamy Rangarajan ◽  
◽  
Raja Purushothaman ◽  
Maheswari Prabhakar ◽  
Cezary Szczepański ◽  
...  

Crop and disease classification is one of the important problems in automation of agricultural processes with multi-cropping method where the field is cultivated with more than one crop. In order to solve this classification problem, a study has been carried out in the field cultivating eggplant (Solanum melongena) and tomato (Solanum lycopersicum) using the images obtained from a mobile phone camera. Textural descriptors namely contrast, correlation, energy and homogeneity were extracted from the gray-scale converted RGB image for crop identification, i.e., (tomato or eggplant) and the same descriptors were extracted from the gray-scale converted image from Hue Saturation Value (HSV) for disease classification (due to Cercospora leaf spot disease or two-spotted spider infestation). Discriminant analysis, Naive Bayes algorithm, support vector machine and neural network were the classification algorithms used with a resulting best accuracy of 97.61%, 95.62%, 98.01% and 98.94% for crop identification, 86.09%, 76.52%, 86.96% and 86.04% for disease classification respectively. Similarly, application of algorithm with 6 histogram-based descriptors for health status detection resulted in an accuracy of 66.67%, 37.04%, 50% and 72.9% respectively. Deep learning algorithm namely AlexNet was also evaluated which resulted in an accuracy of 100% for crop identification, 89.36% for health status detection and 81.51% for disease classification. Among the algorithms, AlexNet resulted in the best average accuracy of 90.29% for the above classification tasks.

2021 ◽  
Vol 3 (3) ◽  
pp. 542-558
Author(s):  
Lijuan Tan ◽  
Jinzhu Lu ◽  
Huanyu Jiang

Tomato production can be greatly reduced due to various diseases, such as bacterial spot, early blight, and leaf mold. Rapid recognition and timely treatment of diseases can minimize tomato production loss. Nowadays, a large number of researchers (including different institutes, laboratories, and universities) have developed and examined various traditional machine learning (ML) and deep learning (DL) algorithms for plant disease classification. However, through pass survey analysis, we found that there are no studies comparing the classification performance of ML and DL for the tomato disease classification problem. The performance and outcomes of different traditional ML and DL (a subset of ML) methods may vary depending on the datasets used and the tasks to be solved. This study generally aimed to identify the most suitable ML/DL models for the PlantVillage tomato dataset and the tomato disease classification problem. For machine learning algorithm implementation, we used different methods to extract disease features manually. In our study, we extracted a total of 52 texture features using local binary pattern (LBP) and gray level co-occurrence matrix (GLCM) methods and 105 color features using color moment and color histogram methods. Among all the feature extraction methods, the COLOR+GLCM method obtained the best result. By comparing the different methods, we found that the metrics (accuracy, precision, recall, F1 score) of the tested deep learning networks (AlexNet, VGG16, ResNet34, EfficientNet-b0, and MobileNetV2) were all better than those of the measured machine learning algorithms (support vector machine (SVM), k-nearest neighbor (kNN), and random forest (RF)). Furthermore, we found that, for our dataset and classification task, among the tested ML/DL algorithms, the ResNet34 network obtained the best results, with accuracy of 99.7%, precision of 99.6%, recall of 99.7%, and F1 score of 99.7%.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1694
Author(s):  
Mathew Ashik ◽  
A. Jyothish ◽  
S. Anandaram ◽  
P. Vinod ◽  
Francesco Mercaldo ◽  
...  

Malware is one of the most significant threats in today’s computing world since the number of websites distributing malware is increasing at a rapid rate. Malware analysis and prevention methods are increasingly becoming necessary for computer systems connected to the Internet. This software exploits the system’s vulnerabilities to steal valuable information without the user’s knowledge, and stealthily send it to remote servers controlled by attackers. Traditionally, anti-malware products use signatures for detecting known malware. However, the signature-based method does not scale in detecting obfuscated and packed malware. Considering that the cause of a problem is often best understood by studying the structural aspects of a program like the mnemonics, instruction opcode, API Call, etc. In this paper, we investigate the relevance of the features of unpacked malicious and benign executables like mnemonics, instruction opcodes, and API to identify a feature that classifies the executable. Prominent features are extracted using Minimum Redundancy and Maximum Relevance (mRMR) and Analysis of Variance (ANOVA). Experiments were conducted on four datasets using machine learning and deep learning approaches such as Support Vector Machine (SVM), Naïve Bayes, J48, Random Forest (RF), and XGBoost. In addition, we also evaluate the performance of the collection of deep neural networks like Deep Dense network, One-Dimensional Convolutional Neural Network (1D-CNN), and CNN-LSTM in classifying unknown samples, and we observed promising results using APIs and system calls. On combining APIs/system calls with static features, a marginal performance improvement was attained comparing models trained only on dynamic features. Moreover, to improve accuracy, we implemented our solution using distinct deep learning methods and demonstrated a fine-tuned deep neural network that resulted in an F1-score of 99.1% and 98.48% on Dataset-2 and Dataset-3, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


Author(s):  
Yang Xu ◽  
Priyojit Das ◽  
Rachel Patton McCord

Abstract Motivation Deep learning approaches have empowered single-cell omics data analysis in many ways and generated new insights from complex cellular systems. As there is an increasing need for single cell omics data to be integrated across sources, types, and features of data, the challenges of integrating single-cell omics data are rising. Here, we present an unsupervised deep learning algorithm that learns discriminative representations for single-cell data via maximizing mutual information, SMILE (Single-cell Mutual Information Learning). Results Using a unique cell-pairing design, SMILE successfully integrates multi-source single-cell transcriptome data, removing batch effects and projecting similar cell types, even from different tissues, into the shared space. SMILE can also integrate data from two or more modalities, such as joint profiling technologies using single-cell ATAC-seq, RNA-seq, DNA methylation, Hi-C, and ChIP data. When paired cells are known, SMILE can integrate data with unmatched feature, such as genes for RNA-seq and genome wide peaks for ATAC-seq. Integrated representations learned from joint profiling technologies can then be used as a framework for comparing independent single source data. Supplementary information Supplementary data are available at Bioinformatics online. The source code of SMILE including analyses of key results in the study can be found at: https://github.com/rpmccordlab/SMILE.


In agriculture the major problem is leaf disease identifying these disease in early stage increases the yield. To reduce the loss identifying the various disease is very important. In this work , an efficient technique for identifying unhealthy tomato leaves using a machine learning algorithm is proposed. Support Vector Machines (SVM) is the methodology of machine learning , and have been successfully applied to a number of applications to identify region of interest, classify the region. The proposed algorithm has three main staggers, namely preprocessing, feature extraction and classification. In preprocessing, the images are converted to RGB and the average filter is used to eliminate the noise in the input image. After the pre-processing stage, features such as texture, color and shape are extracted from each image. Then, the extracted features are presented to the classifier to classify an input tomato leaf as a healthy or unhealthy image. For classification, in this paper, a multi-kernel support vector machine (MKSVM) is used. The performance of the proposed method is analysed on the basis of different metrics, such as accuracy, sensitivity and specificity. The images used in the test are collected from the plant village. The proposed method implemented in MATLAB.


2020 ◽  
Author(s):  
Zongchen Li ◽  
Wenzhuo Zhang ◽  
Guoxiong Zhou

Abstract Aiming at the difficult problem of complex extraction for tree image in the existing complex background, we took tree species as the research object and proposed a fast recognition system solution for tree image based on Caffe platform and deep learning. In the research of deep learning algorithm based on Caffe framework, the improved Dual-Task CNN model (DCNN) is applied to train the image extractor and classifier to accomplish the dual tasks of image cleaning and tree classification. In addition, when compared with the traditional classification methods represented by Support Vector Machine (SVM) and Single-Task CNN model, Dual-Task CNN model demonstrates its superiority in classification performance. Then, in order for further improvement to the recognition accuracy for similar species, Gabor kernel was introduced to extract the features of frequency domain for images in different scales and directions, so as to enhance the texture features of leaf images and improve the recognition effect. The improved model was tested on the data sets of similar species. As demonstrated by the results, the improved deep Gabor convolutional neural network (GCNN) is advantageous in tree recognition and similar tree classification when compared with the Dual-Task CNN classification method. Finally, the recognition results of trees can be displayed on the application graphical interface as well. In the application graphical interface designed based on Ubantu system, it is capable to perform such functions as quick reading of and search for picture files, snapshot, one-key recognition, one-key e


2020 ◽  
pp. 35
Author(s):  
M. Campos-Taberner ◽  
F.J. García-Haro ◽  
B. Martínez ◽  
M.A. Gilabert

<p class="p1">The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.</p>


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2019 ◽  
Vol 17 (3) ◽  
pp. e0204 ◽  
Author(s):  
Krishnaswamy R. Aravind ◽  
Purushothaman Raja ◽  
Rajendran Ashiwin ◽  
Konnaiyar V. Mukesh

Aim of study: The application of pre-trained deep learning models, AlexNet and VGG16, for classification of five diseases (Epilachna beetle infestation, little leaf, Cercospora leaf spot, two-spotted spider mite and Tobacco Mosaic Virus (TMV)) and a healthy plant in Solanum melongena (brinjal in Asia, eggplant in USA and aubergine in UK) with images acquired from smartphones.Area of study: Images were acquired from fields located at Alangudi (Pudukkottai district), Tirumalaisamudram and Pillayarpatti (Thanjavur district) – Tamil Nadu, India.Material and methods: Most of earlier studies have been carried out with images of isolated leaf samples, whereas in this work the whole or part of the plant images were utilized for the dataset creation. Augmentation techniques were applied to the manually segmented images for increasing the dataset size. The classification capability of deep learning models was analysed before and after augmentation. A fully connected layer was added to the architecture and evaluated for its performance.Main results: The modified architecture of VGG16 trained with the augmented dataset resulted in an average validation accuracy of 96.7%. Despite the best accuracy, all the models were tested with sample images from the field and the modified VGG16 resulted in an accuracy of 93.33%.Research highlights: The findings provide a guidance for possible factors to be considered in future research relevant to the dataset creation and methodology for efficient prediction using deep learning models.


Sign in / Sign up

Export Citation Format

Share Document