scholarly journals Influence of microwave-assisted chemical treatment on delignification of rice straw biomass

2021 ◽  
Vol 22 (1&2) ◽  
pp. 87-95
Author(s):  
Mohd Ishfaq Bhat ◽  
Navin Chandra Shahi ◽  
Umesh Chand Lohani ◽  
Anil Kumar ◽  
Sheeba Malik

Lignocellulosic biomass (like rice straw) provides an alternative for depleting non-renewable energy sources through its value-added utilization (like production of biofuels and nanocellulose) owing to its abundance, renewability, polymer presence and environmental friendliness. Prior to its utilization, any lignocellulosic biomass is subjected to a time-consuming delignification process for lignin free biomass recovery. The present study aims to reduce the time of delignification of rice straw along with enhancing the delignification percentage of biomass by use of microwave assisted sodium chlorite method. The experiments were done at two microwave power levels (640, 800 W), three bleaching solution concentrations (0.4, 1.7, 3.0 %) and three microwave treatment times (4, 8, 12 min). The delignification percentage of the rice straw for the whole experimentation varied from 24.7 to 90.12%. The results revealed that the time of delignification was greatly reduced (12 min) with a very high delignification (90.12%) percentage. The morphology of the delignified samples also revealed the deconstruction of the lignin structure. The improved method can thus be applied for the delignification of other biomasses as well for quick and effective delignification

2017 ◽  
Vol 202 ◽  
pp. 351-370 ◽  
Author(s):  
Long Zhou ◽  
Fabio Santomauro ◽  
Jiajun Fan ◽  
Duncan Macquarrie ◽  
James Clark ◽  
...  

Generally, biorefineries convert lignocellulosic biomass into a range of biofuels and further value added chemicals. However, conventional biorefinery processes focus mainly on the cellulose and hemicellulose fractions and therefore produce only low quality lignin, which is commonly burnt to provide process heat. To make full use of the biomass, more attention needs to be focused on novel separation techniques, where high quality lignin can be isolated that is suitable for further valorisation into aromatic chemicals and fuel components. In this paper, three types of lignocellulosic biomass (softwood, hardwood and herbaceous biomass) were processed by microwave-assisted acidolysis to produce high quality lignin. The lignin from the softwood was isolated largely intact in the solid residue after acidolysis. For example, a 10 min microwave-assisted acidolysis treatment produced lignin with a purity of 93% and in a yield of 82%, which is superior to other conventional separation methods reported. Furthermore, py-GC/MS analysis proved that the isolated lignin retained the original structure of native lignin in the feedstock without severe chemical modification. This is a large advantage, and the purified lignin is suitable for further chemical processing. To assess the suitability of this methodology as part of a biorefinery system, the aqueous phase, produced after acidolysis of the softwood, was characterised and assessed for its suitability for fermentation. The broth contained some mono- and di-saccharides but mainly contained organic acids, oligosaccharides and furans. While this is unsuitable for S. cerevisiae and other common ethanol producing yeasts, two oleaginous yeasts with known inhibitor tolerances were selected: Cryptococcus curvatus and Metschnikowia pulcherrima. Both yeasts could grow on the broth, and demonstrated suitable catabolism of the oligosaccharides and inhibitors over 7 days. In addition, both yeasts were shown to be able to produce an oil with a similar composition to that of palm oil. This preliminary work demonstrates new protocols of microwave-assisted acidolysis and therefore offers an effective approach to produce high purity lignin and fermentable chemicals, which is a key step towards developing a zero-waste lignocellulosic biorefinery.


2018 ◽  
Vol 2 (5) ◽  
pp. 1035-1047 ◽  
Author(s):  
Junfeng Feng ◽  
Jianchun Jiang ◽  
Chung-yun Hse ◽  
Zhongzhi Yang ◽  
Kui Wang ◽  
...  

Selective catalytic conversion of biomass waste for producing methyl levulinate (MLA) via directional microwave-assisted liquefaction was investigated.


2020 ◽  
Vol 7 (3) ◽  
pp. 290-303
Author(s):  
Mayanglambam Manolata Devi ◽  
Nidhi Aggarwal ◽  
Shunmugavel Saravanamurugan

: Carbonaceous materials are proven to be vital in day-to-day life as well as in advanced science and technology applications. Rice straw, a secondary agricultural lignocellulosic biomass, has drawn great attention for the production of value-added carbonaceous material. Because, it can provide an alternative economic, greener and sustainable resource of carbon to non-renewable fossil fuelbased precursors while controlling the worsening situation of environmental pollution due to improper disposal and stubble burning. In this review, recent developments in the production of carbonaceous materials from rice straw are presented. Biochar and activated carbon were reported to be the prime carbonaceous materials prepared from the rice straw. Thus, pyrogenic preparation of biochar and the influence of its pyrolysis temperature to the yield, composition, surface area, porosity and morphology are preliminarily discussed. This is followed by a detailed discussion on the preparation of activated carbon with an emphasis on the influencing reaction factors for improving the characteristic properties of the activated carbons. Additionally, the major characterization techniques dealing with determining the surface area and porosity (BET analyzer) and microstructure (secondary electron microscope (SEM) and transmission electron microscope (TEM)) for both the carbonaceous materials are also discussed. Finally, major applications of both the carbonaceous materials are briefly reviewed. Thus, the present review clearly highlights the usefulness of agricultural lignocellulosic waste rice straw for the conversion of waste to value-added carbonaceous materials.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yumei Jian ◽  
Ye Meng ◽  
Hu Li

Increasing fossil fuels consumption and global warming have driven the global revolution towards renewable energy sources. Lignocellulosic biomass is the main source of renewable carbon-based fuels. The abundant intermolecular linkages and high oxygen content between cellulose, hemicellulose, and lignin limit the use of traditional fuels. Therefore, it is a promising strategy to break the above linkages and remove oxygen by selective catalytic cracking of C–O bond to further transform the main components of biomass into small molecular products. This mini-review discusses the significance of selectivity control in C–O bond cleavage with well-tailored catalytic systems or strategies for furnishing biofuels and value-added chemicals of high efficiency from lignocellulosic biomass. The current challenges and future opportunities of converting lignocellulose biomass into high-value chemicals are also summarized and analyzed.


2021 ◽  
Vol 302 ◽  
pp. 02013
Author(s):  
Parita Mutrakulcharoen ◽  
Peerapong Pornwongthong ◽  
S.T Anne Sahithi ◽  
Theerawut Phusantisampan ◽  
Atthasit Tawai ◽  
...  

Commonly, the agricultural waste, i.e. lignocellulosic biomass is disposed through combustion causing air pollution with production of PM2.5 and PM10 particles. However, it has been found that these biomasses can be used as source for the production of biofuels and other valuable biochemicals. Though deconstruction of lignocellulosic biomass is challenging due to its complex structure. In this study, rice straw (RS) was pretreated using potassium permanganate (KMnO4) to enhance the enzymatic saccharification efficiency. The study was carried out by varying the operational factors in pretreatment, including temperature (30-90°C), time (30-360 min) and concentration of KMnO4 (0.5-3.0, % w/v), respectively, based on Box-Behnken design (BBD). Through multi-regression analysis of the experimental data obtained after pretreatment, the optimum conditions were determined. The optimum conditions for temperature, time and potassium permanganate concentration were 48.09°C, 360 min, and 1.36% w/v, respectively. The saccharifications of pretreatment and untreated rice straw were carried out using Cellic Ctec2. The reducing sugar was determined by using DNS method and the yields of the untreated and pretreated RS were 32.38 and 49.011 mg/mL, respectively. The results showed that the sugar for pretreated RS were 1.51 fold times higher compared to untreated RS. Therefore, this work illustrates the pretreatment efficiency for KMnO4 to enhance the reducing sugar yield during saccharification, which can be used for biofuel and value-added product productions.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahdieh Sharifi ◽  
Ramyakrishna Pothu ◽  
Rajender Boddula ◽  
Inamuddin

Background: There is a developing demand for innovation in petroleum systems replacements. Towards this aim, lignocellulosic biomass suggested as a possible sustainable source for the manufacturing of fuels and produced chemicals. The aims of this paper are to investigate different kinds of β-O-4 lignin model compounds for the production of value-added chemicals in presence of ionic liquids. Especially, a cheap β-O-4 lignin model Guaiacol glycerol ether (GGE) (Guaifenesin) is introduced to produce valuable chemicals and novel products. Methods: Research related to chemical depolymerization of lignocellulosic biomass activity is reviewed, the notes from different methods such as thermal and microwave collected during at least 10 years. So, this collection provides a good source for academic research and it gives an efficient strategy for the manufacturing of novel value-added chemicals at an industrial scale. Results: This research presented that ionic liquid microwave-assisted is a power saving, cost efficient, fast reaction, and clean way with high selectively and purity for production of high value chemicals rather that conversional heating. Guaiacol and catechol are some of these valuable chemicals that is produced from β-O-4 lignin model compounds with high word demands that are capable to produce in industry scale. Conclusion: The β-O-4 lignin model compounds such as Guaiacol glycerol ether (GGE) (Guaifenesin) are good platform for developing food materials, perfumery, biorefinery, and pharmaceutical industry by ionic liquids-assisted lignin depolymerization method.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


2017 ◽  
Vol 19 (8) ◽  
pp. 1969-1982 ◽  
Author(s):  
Deepak Verma ◽  
Rizki Insyani ◽  
Young-Woong Suh ◽  
Seung Min Kim ◽  
Seok Ki Kim ◽  
...  

For realizing sustainable bio-based refineries, it is crucial to obtain high yields of value-added chemicalsviadirect conversion of cellulose and lignocellulosic biomass.


Sign in / Sign up

Export Citation Format

Share Document