scholarly journals Fatty acid profiling in gobhi sarson (Brassica napus)

2021 ◽  
Vol 22 (3) ◽  
pp. 409-414
Author(s):  
Sunidhi Tiwari ◽  
S. K. Gupta ◽  
S. K. Rai ◽  
R. G. Upadhyay ◽  
Jeevanjot Kaur ◽  
...  

An experiment was carried out during 2017-2018 to estimate fatty acids and the oil content (OC) in fifteen Brassica napus genotypes. The quality parameters of oil include fatty acids (FA) and the oil content (OC), important trait differed significantly (p?0.05) amongst the Brassica species genotype. Among the genotypes, significant differences were noted for the fatty acids and the oil content (OC). In Brassica napus seeds oil content varies in between the range of 37.45–41.86% respectively. The saturated fatty acid (SFA) includes the Palmitic acid (PA) varied in between the range of 2.68–4.43% and oleic acid (OA) content results lied between 8.88-56.18% respectively. In linoleic acid (LA) and linolenic acid (LNA), presence of significant differences (p?0.05) was there. The content of linoleic acid (LA) lies in the range between 12.97- 17.98% respectively and linolenic acid (LNA) content varied from 13.41-23.42% respectively. The stearic acid (SA) content varied from1.20-1.66 respectively. Erucic acid, another essential trait, significant differences were noted amongst the Brassica species genotypes i.e. 12.96-48.80%. The minimum erucic acid (EA) content was noted in GSL-1 genotype and the genotypes namely RSPN-28 and CNH-13-2, EC552608, GSC-6 have also low EA content and the rest of the genotypes namely, RSPN-29, DGS-1, RSPN-25, CNH-11-7, CNH-11-13, RL-1359, HNS-1101, GSC-101, CNH-11-2, HNS-1102 have high erucic content. In fatty acids (FA) content, significant differences were observed in rapeseed-mustard. Desirable cultivars with higher yield and oil content are the chief objective of this concerned study to be further employed in the breeding program.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1983-1990 ◽  
Author(s):  
Takahiro Oura ◽  
Susumu Kajiwara

Fungi, like plants, are capable of producing the 18-carbon polyunsaturated fatty acids linoleic acid and α-linolenic acid. These fatty acids are synthesized by catalytic reactions of Δ12 and ω3 fatty acid desaturases. This paper describes the first cloning and functional characterization of a yeast ω3 fatty acid desaturase gene. The deduced protein encoded by the Saccharomyces kluyveri FAD3 gene (Sk-FAD3) consists of 419 amino acids, and shows 30–60 % identity with Δ12 fatty acid desaturases of several eukaryotic organisms and 29–31 % identity with ω3 fatty acid desaturases of animals and plants. During Sk-FAD3 expression in Saccharomyces cerevisiae, α-linolenic acid accumulated only when linoleic acid was added to the culture medium. The disruption of Sk-FAD3 led to the disappearance of α-linolenic acid in S. kluyveri. These findings suggest that Sk-FAD3 is the only ω3 fatty acid desaturase gene in this yeast. Furthermore, transcriptional expression of Sk-FAD3 appears to be regulated by low-temperature stress in a manner different from the other fatty acid desaturase genes in S. kluyveri.


1970 ◽  
Vol 50 (3) ◽  
pp. 233-247 ◽  
Author(s):  
D. B. FOWLER ◽  
R. K. DOWNEY

Self-pollinated seed from normal and erucic acid free plants of summer rapeseed (Brassica napus L.) was harvested at weekly intervals from pollination to maturity. Oven-dried whole seeds and their component parts were weighed and analyzed for oil content and fatty acid composition. Oil and dry matter accumulation followed sigmoidal patterns, most of the deposition occurring between 14 and 35 days after pollination (DAP). The relative contribution of the testa, endosperm and embryo to dry weight and oil content of whole seeds changed significantly during seed development. Oil content of the developing embryo varied from 22 to 44%, and the testa from 1.6 to 13%, although at maturity only 6 to 8% oil was found in the testa and adhering aleurone. The nucleate endosperm oil content was estimated to be low and in the order of 2 to 2.5%. In 7- to 14-day-old seeds the dry weight, oil content and fatty acid composition were largely determined by the testa and endosperm. From 14 to 21 DAP the testa and embryo were dominant and after 21 DAP the embryo was the controlling influence on the seed characteristics studied.Oils of the testa, nucleate endosperm and embryo differed in fatty acid composition. In seeds free of erucic acid, the ratios of the 18 carbon fatty acids of the embryo and testa remained nearly constant from 21 DAP to maturity. This suggested that the variation in fatty acid composition as well as oil content during seed development in this material was due to disproportionate changes in the contribution of the testa, nucleate endosperm and embryo. However, in developing seeds capable of producing erucic acid a change in the ratio of fatty acid synthesis occurred in both the testa and embryo.


2012 ◽  
Vol 66 (2) ◽  
pp. 207-209 ◽  
Author(s):  
Boris Pejin ◽  
Ljubodrag Vujisic ◽  
Marko Sabovljevic ◽  
Vele Tesevic ◽  
Vlatka Vajs

The fatty acid composition of the moss species Atrichum undulatum (Hedw.) P. Beauv. (Polytrichaceae) and Hypnum andoi A.J.E. Sm. (Hypnaceae) collected in winter time were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) as a contribution to their chemistry. Eight fatty acids were identified in the chloroform/methanol extract 1:1 of A. undulatum (linoleic acid 26.80%, palmitic acid 22.17%, ?-linolenic acid 20.50%, oleic acid 18.49%, arachidonic acid 6.21%, stearic acid 3.34%, cis-5,8,11,14,17-eicosapentaenoic acid 1.52% and behenic acid 1.01%), while six fatty acids were found in the same type of extract of H. andoi (palmitic acid 63.48%, erucic acid 12.38%, stearic acid 8.08%, behenic acid 6.26%, lignoceric acid 5.16% and arachidic acid 4.64%). According to this study, the moss A. undulatum can be considered as a good source of both essential fatty acids for humans (linoleic acid and ?-linolenic acid) during the winter.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Ingeborg Hanbauer ◽  
Ignacio Rivero-Covelo ◽  
Ekrem Maloku ◽  
Adam Baca ◽  
Qiaoyan Hu ◽  
...  

Feeding mice, over 3 generations, an equicaloric diet in which α-linolenic acid, the dietary precursor of n-3 polyunsaturated fatty acids, was substituted by linoleic acid, the dietary precursor of n-6 polyunsaturated fatty acids, significantly increased body weight throughout life when compared with standard diet-fed mice. Adipogenesis observed in the low n-3 fatty acid mice was accompanied by a 6-fold upregulation of stearyl-coenzyme A desaturase 1 (Scd1), whose activity is correlated to plasma triglyceride levels. In total liver lipid and phospholipid extracts, the sum of n-3 fatty acids and the individual longer carbon chain acids, eicosapentaenoic acid (20:5n3), docosapentaenoic acid (22:5n3), and docosahexaenoic acid (22:6n3) were significantly decreased whereas arachidonic acid (20:4n6) was significantly increased. In addition, low n-3 fatty acid-fed mice had liver steatosis, heart, and kidney hypertrophy. Hence, reducing dietary α-linolenic acid, from 1.02 energy% to 0.16 energy% combined with raising linoleic acid intake resulted in obesity and had detrimental consequences on organ function.


2008 ◽  
Vol 52 (No. 7) ◽  
pp. 203-213 ◽  
Author(s):  
D. Schneideroá ◽  
J. Zelenka ◽  
E. Mrkvicová

We studied the effect of different levels of linseed oils made either of the flax cultivar Atalante with a high content of &alpha;-linolenic acid (612 g/kg) or of the cultivar Lola with a predominating content of linoleic acid (708 g/kg) in a chicken diet upon the fatty acid pattern in meat. Cockerels Ross 308 were fed the diets containing 1, 3, 5 or 7 per cent of oil in the last 15 days of fattening. Breast meat (BM) and thigh meat (TM) without skin of 8 chickens from each dietary group were used for analyses. The relative proportions of fatty acids were expressed as percentages of total determined fatty acids. When feeding Atalante oil, the proportions of n-6 fatty acids were highly significantly lower while those of n-3 fatty acids were higher; the ratio of n-6/n-3 polyunsaturated fatty acids in meat was narrower (<i>P</i> < 0.001) than in chickens fed oil with a low content of &alpha;-linolenic acid. In BM and TM, the relative proportions of &alpha;-linolenic and &gamma;-linolenic acids were nearly the same, the proportion of linoleic acid in BM was lower, and the proportions of the other polyunsaturated fatty acids in BM were higher than in TM. In BM, the ratio of n-6/n-3 polyunsaturated fatty acids was significantly (<i>P</i> < 0.001) more favourable than that found in TM. The relative proportions of total saturated and monounsaturated fatty acids in meat decreased and those of polyunsaturated fatty acids increased significantly (<i>P</i> < 0.01) in dependence on the increasing level of dietary oils. When feeding Atalante oil, a significant increase in the proportion of linoleic acid in BM but not in TM was observed. The proportions of the other n-6 fatty acids decreased and those of all determined n-3 fatty acids, with the exception of docosahexaenoic acid, significantly increased with the increasing level of oil in the diet. When feeding Lola oil, its increasing content in the diet increased the relative proportion of linoleic acid as well as its elongation to &gamma;-linolenic acid; however, the proportions of arachidonic and adrenic acid did not change significantly (<i>P</i> > 0.05). The proportion of &alpha;-linolenic acid increased in both BM and TM. The proportion of eicosapentaenoic and clupanodonic acids in BM significantly decreased. The ratio of n-6 to n-3 polyunsaturated fatty acids ranged from 0.9 to 13.6 and from 1.0 to 17.2 in BM and TM, respectively. An increase in the level of Lola oil in the diet by 1% caused that the n-6/n-3 polyunsaturated fatty acid ratio extended by 1.00 and 1.19 units in BM and TM, respectively. Dependences of n-6/n-3 ratio on the level of Atalante oil were expressed by equations of convex parabolas with minima at the level of oil 5.8 and 5.9% for BM and TM, respectively. By means of the inclusion of linseed oil with a high content of &alpha;-linolenic acid in the feed mixture it would be possible to produce poultry meat as a functional food with a very narrow ratio of n-6/n-3 polyunsaturated fatty acids.


1978 ◽  
Vol 40 (1) ◽  
pp. 155-157 ◽  
Author(s):  
A. G. Hassam ◽  
M. A. Crawford

1. Rats were fed on either a diet deficient in essential fatty acid (EFA) or one supplemented with dihomo-γ-linolenic acid (20:3,n-6) at levels that represented 0.25, 0.5, 1.0 and 2.0% of the dietary energy.2. Supplementation of the diet of EFA-deficient animals with 20:3,n-6 reversed most of the fatty acid changes induced in the liver phospholipid fraction.3. The EFA potency of 20:3,n-6 was found to be similar to that of γ-linolenic acid (18:3,n-6) which has been shown to be higher than that of linoleic acid (18:2,n-6).


1962 ◽  
Vol 40 (7) ◽  
pp. 847-855 ◽  
Author(s):  
D. C. Leegwater ◽  
C. G. Youngs ◽  
J. F. T. Spencer ◽  
B. M. Craig

The production of neutral lipids and phospholipids by submerged cultures of the mushroom Tricholoma nudum, as well as the fatty acid composition of these two fractions, was studied as a function of time. The bulk of the neutral lipids was produced after 2 days when the organism appeared to be in a non-proliferative phase. The major fatty acids of the neutral lipids were palmitic, oleic, and linoleic acid (23–35% each); stearic acid was a minor component (8–13%); myristic, palmitoleic, and linolenic acid were present in small amounts (0.5–4.8%). The major fatty acid of the phospholipids was linoleic acid (55–70%); palmitic (15–19%), stearic (1.8–4.6%), and oleic (7–19%) acid were minor components; myristic, palmitoleic, and linolenic (0–2.3%) were present in small amounts. Linolenic acid was a major fatty acid (26–30%) only in the early stages of growth.A preliminary investigation was carried out with a 4-day-old culture to establish the identity of the various components of the neutral lipids and phospholipids. The neutral lipids were mainly triglycerides (92%). Small amounts of ergosterol esters (1%), free fatty acids (< 1%), ergosterol (1.7%), and unidentified non-saponifiable compounds were also present. The phospholipids contained phosphatidyl choline (59%) as the major component; phosphatidyl ethanolamine (26%), phosphatidyl serine and phosphatidic acid (7.8%), and an inositol containing phospholipid were minor components.Some of the techniques applied were specially developed for the present type of studies and are described in detail.


1962 ◽  
Vol 40 (1) ◽  
pp. 847-855 ◽  
Author(s):  
D. C. Leegwater ◽  
C. G. Youngs ◽  
J. F. T. Spencer ◽  
B. M. Craig

The production of neutral lipids and phospholipids by submerged cultures of the mushroom Tricholoma nudum, as well as the fatty acid composition of these two fractions, was studied as a function of time. The bulk of the neutral lipids was produced after 2 days when the organism appeared to be in a non-proliferative phase. The major fatty acids of the neutral lipids were palmitic, oleic, and linoleic acid (23–35% each); stearic acid was a minor component (8–13%); myristic, palmitoleic, and linolenic acid were present in small amounts (0.5–4.8%). The major fatty acid of the phospholipids was linoleic acid (55–70%); palmitic (15–19%), stearic (1.8–4.6%), and oleic (7–19%) acid were minor components; myristic, palmitoleic, and linolenic (0–2.3%) were present in small amounts. Linolenic acid was a major fatty acid (26–30%) only in the early stages of growth.A preliminary investigation was carried out with a 4-day-old culture to establish the identity of the various components of the neutral lipids and phospholipids. The neutral lipids were mainly triglycerides (92%). Small amounts of ergosterol esters (1%), free fatty acids (< 1%), ergosterol (1.7%), and unidentified non-saponifiable compounds were also present. The phospholipids contained phosphatidyl choline (59%) as the major component; phosphatidyl ethanolamine (26%), phosphatidyl serine and phosphatidic acid (7.8%), and an inositol containing phospholipid were minor components.Some of the techniques applied were specially developed for the present type of studies and are described in detail.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1082D-1082 ◽  
Author(s):  
Kyoung-Shim Cho ◽  
Hyun-Ju Kim ◽  
Jae-Ho Lee ◽  
Jung-Hoon Kang ◽  
Young-Sang Lee

Fatty acid is known as a physiologically active compound, and its composition in rice may affect human health in countries where rice is the major diet. The fatty acid composition in brown rice of 120 Korean native cultivars was determined by one-step extraction/methylation method and GC. The average composition of 9 detectable fatty acids in tested rice cultivars were as followings: myristic acid; 0.6%, palmitic acid; 21.2%, stearic acid; 1.8%, oleic acid; 36.5%, linoleic acid; 36.3%, linolenic acid; 1.7%, arachidic acid; 0.5%, behenic acid; 0.4%, and lignoceric acid; 0.9%. Major fatty acids were palmitic, oleic and linoleic acid, which composed around 94%. The rice cultivar with the highest linolenic acid was cv. Jonajo (2.1%), and cvs. Pochoenjangmebye and Sandudo showed the highest composition of palmitic (23.4%) and oleic acid (44.8%), respectively. Cultivar Pochuenjangmebye exhitibed the highest composition of saturated fatty acid (28.1%), while cvs. Sandudo and Modo showed the highest mono-unsaturated (44.8%) and poly-unsaturated (42.4%) fatty acid composition, respectively. The oleic acid showed negative correlation with palmitic and linoleic acid, while positive correlation between behenic and lignoceric acids was observed.


Sign in / Sign up

Export Citation Format

Share Document