Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum

2020 ◽  
Vol 13 (5) ◽  
pp. 1032-1043
Author(s):  
JIN Wen-ling ◽  
◽  
CAO Nai-liang ◽  
ZHU Ming-dong ◽  
CHEN Wei ◽  
...  
2019 ◽  
Vol 9 (5) ◽  
pp. 1027 ◽  
Author(s):  
Insuck Baek ◽  
Moon Kim ◽  
Byoung-Kwan Cho ◽  
Changyeun Mo ◽  
Jinyoung Barnaby ◽  
...  

The inspection of rice grain that may be infected by seedborne disease is important for ensuring uniform plant stands in production fields as well as preventing proliferation of some seedborne diseases. The goal of this study was to use a hyperspectral imaging (HSI) technique to find optimal wavelengths and develop a model for detecting discolored, diseased rice seed infected by bacterial panicle blight (Burkholderia glumae), a seedborne pathogen. For this purpose, the HSI data spanning the visible/near-infrared wavelength region between 400 and 1000 nm were collected for 500 sound and discolored rice seeds. For selecting optimal wavelengths to use for detecting diseased seed, a sequential forward selection (SFS) method combined with various spectral pretreatments was employed. To evaluate performance based on optimal wavelengths, support vector machine (SVM) and linear and quadratic discriminant analysis (LDA and QDA) models were developed for detection of discolored seeds. As a result, the violet and red regions of the visible spectrum were selected as key wavelengths reflecting the characteristics of the discolored rice seeds. When using only two or only three selected wavelengths, all of the classification methods achieved high classification accuracies over 90% for both the calibration and validation sample sets. The results of the study showed that only two to three wavelengths are needed to differentiate between discolored, diseased and sound rice, instead of using the entire HSI wavelength regions. This demonstrates the feasibility of developing a low cost multispectral imaging technology based on these selected wavelengths for non-destructive and high-throughput screening of diseased rice seed.


2014 ◽  
Vol 33 (2) ◽  
pp. 77
Author(s):  
Jonni Firdaus ◽  
Rokhani Hasbullah ◽  
Usman Ahmad ◽  
M. Rahmad Suhartanto

Viability is an important component of seed quality, which could be detained by germinating the seeds. Currently testing the seed viability of rice takes a long time (5-14 days), so it becomes a limiting factor in the seed production process. An alternative method for rapid seed viability detection is using the Near Infrared (NIR) spectra and using artificial neural network (ANN) as a data processing system. This research was aimed to study the use of NIR spectra and ANN to predict the viability of rice seeds. NIR reflectance (1,000-2,500 nm) of a Ciherang rice seed samples (40 grams), was used as the input data to develop the ANN model. A total of 60 samples were subjected to accelerated aging to obtain various levels of germination. The development of ANN models was done through calibration and validation of NIR spectra to the viability parameters. As ANN input, NIR reflectance of seed sample was given pretreatment data such as normalization, first derivative, second derivative, standard normal variate (SNV) and principal component analysis (PCA). The results showed that longer accelerated aging caused a decrease in seed viability. This was also indicated by the decrease in soluble protein and an increase in free fatty acids. The intensity of the NIR absorbance spectra also showed the same in the absorption region of soluble protein and free fatty acids. The best ANN models to predict the germination was 10PC-5-3 ANN with the SNV NIR reflectance used as the input data. Coefisien correlation of the validation was 0.8947, the value of ratio performance deviation was 2.2359 and the standard error performance was 9.9233%. The use of NIR spectra and ANN was potentially useful to perdict the viability of rice seeds more rapidly.


2021 ◽  
Vol 11 (11) ◽  
pp. 4841
Author(s):  
Hanim Z. Amanah ◽  
Collins Wakholi ◽  
Mukasa Perez ◽  
Mohammad Akbar Faqeerzada ◽  
Salma Sultana Tunny ◽  
...  

Anthocyanins are an important micro-component that contributes to the quality factors and health benefits of black rice. Anthocyanins concentration and compositions differ among rice seeds depending on the varieties, growth conditions, and maturity level at harvesting. Chemical composition-based seeds inspection on a real-time, non-destructive, and accurate basis is essential to establish industries to optimize the cost and quality of the product. Therefore, this research aimed to evaluate the feasibility of near-infrared hyperspectral imaging (NIR-HSI) to predict the content of anthocyanins in black rice seeds, which will open up the possibility to develop a sorting machine based on rice micro-components. Images of thirty-two samples of black rice seeds, harvested in 2019 and 2020, were captured using the NIR-HSI system with a wavelength of 895–2504 nm. The spectral data extracted from the image were then synchronized with the rice anthocyanins reference value analyzed using high-performance liquid chromatography (HPLC). For comparison, the seed samples were ground into powder, which was also captured using the same NIR-HSI system to obtain the data and was then analyzed using the same method. The model performance of partial least square regression (PLSR) of the seed sample developed based on harvesting time, and mixed data revealed the model consistency with R2 over 0.85 for calibration datasets. The best prediction models for 2019, 2020, and mixed data were obtained by applying standard normal variate (SNV) pre-processing, indicated by the highest coefficient of determination (R2) of 0.85, 0.95, 0.90, and the lowest standard error of prediction (SEP) of 0.11, 0.17, and 0.16 mg/g, respectively. The obtained R2 and SEP values of the seed model were comparable to the result of powder of 0.92–0.95 and 0.09–0.15 mg/g, respectively. Additionally, the obtained beta coefficients from the developed model were used to generate seed chemical images for predicting anthocyanins in rice seed. The root mean square error (RMSE) value for seed prediction evaluation showed an acceptable result of 0.21 mg/g. This result exhibits the potential of NIR-HSI to be applied in a seed sorting machine based on the anthocyanins content.


RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44149-44158
Author(s):  
Yong Yang ◽  
Jianping Chen ◽  
Yong He ◽  
Feng Liu ◽  
Xuping Feng ◽  
...  

Rice seed vigor plays a significant role in determining the quality and quantity of rice production.


2015 ◽  
Vol 62 ◽  
pp. 46-51 ◽  
Author(s):  
Le Song ◽  
Qi Wang ◽  
Chunyang Wang ◽  
Yanqing Lin ◽  
Ding Yu ◽  
...  

1998 ◽  
Vol 187 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Christopher Fockenberg ◽  
Andrew J Marr ◽  
Trevor J Sears ◽  
Bor-Chen Chang

Sensors ◽  
2013 ◽  
Vol 13 (7) ◽  
pp. 8916-8927 ◽  
Author(s):  
Wenwen Kong ◽  
Chu Zhang ◽  
Fei Liu ◽  
Pengcheng Nie ◽  
Yong He

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2227 ◽  
Author(s):  
Xiantao He ◽  
Xuping Feng ◽  
Dawei Sun ◽  
Fei Liu ◽  
Yidan Bao ◽  
...  

Seed vitality is one of the primary determinants of high yield that directly affects the performance of seedling emergence and plant growth. However, seed vitality may be lost during storage because of unfavorable conditions, such as high moisture content and temperatures. It is therefore vital for seed companies as well as farmers to test and determine seed vitality to avoid losses of any kind before sowing. In this study, near-infrared hyperspectral imaging (NIR-HSI) combined with multiple data preprocessing methods and classification models was applied to identify the vitality of rice seeds. A total of 2400 seeds of three different years: 2015, 2016 and 2017, were evaluated. The experimental results show that the NIR-HSI technique has great potential for identifying vitality and vigor of rice seeds. When detecting the seed vitality of the three different years, the extreme learning machine model with Savitzky–Golay preprocessing could achieve a high classification accuracy of 93.67% by spectral data from only eight wavebands (992, 1012, 1119, 1167, 1305, 1402, 1629 and 1649 nm), which could be developed for a fast and cost-effective seed-sorting system for industrial online application. When identifying non-viable seeds from viable seeds of different years, the least squares support vector machine model coupled with raw data and selected wavelengths of 968, 988, 1204, 1301, 1409, 1463, 1629, 1646 and 1659 nm achieved better classification performance (94.38% accuracy), and could be adopted as an optimal combination to identify non-viable seeds from viable seeds.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


Sign in / Sign up

Export Citation Format

Share Document