scholarly journals Frother critical coalescence concentration and dose in flotation of copper-bearing carbonaceous shale

Mining Scince ◽  
2019 ◽  
Vol 26 ◽  
Author(s):  
Danuta Szyszka

The paper presents the yield of carbon-and-cooper-bearing shale from the Legnica and Glogow Copper Basin flotation also called Kupferschiefer in the presence of ethylene, diethylene and trithylene glycol butyl ethers (C4E1, C4E2, C4E3) frothers characterized by frother normalized concentration that is ratio of the frother concentration, and its critical coalescence concentration expressed in different units. It was found that the oucome of flotation is identical provided that the frother concentration is expressed in milimoles per Mg.

2021 ◽  
pp. 105678952199119
Author(s):  
Kai Yang ◽  
Qixiang Yan ◽  
Chuan Zhang ◽  
Wang Wu ◽  
Fei Wan

To explore the mechanical properties and damage evolution characteristics of carbonaceous shale with different confining pressures and water-bearing conditions, triaxial compression tests accompanied by simultaneous acoustic emission (AE) monitoring were conducted on carbonaceous shale rock specimens. The AE characteristics of carbonaceous shale were investigated, a damage assessment method based on Shannon entropy of AE was further proposed. The results suggest that the mechanical properties of carbonaceous shale intensify with increasing confining pressure and degrade with increasing water content. Moisture in rocks does not only weaken the cohesion but also reduce the internal friction angle of carbonaceous shale. It is observed that AE activities mainly occur in the post-peak stage and the strong AE activities of saturated carbonaceous shale specimens appear at a lower normalized stress level than that of natural-state specimens. The maximum AE counts and AE energy increase with water content while decrease with confining pressure. Both confining pressure and water content induce changes in the proportions of AE dominant frequency bands, but the changes caused by confining pressure are more significant than those caused by water content. The results also indicate that AE entropy can serve as an applicable index for rock damage assessment. The damage evolution process of carbonaceous shale can be divided into two main stages, including the stable damage development stage and the damage acceleration stage. The damage variable increases slowly accompanied by a few AE activities at the first stage, which is followed by a rapid growth along with intense acoustic emission activities at the damage acceleration stage. Moreover, there is a sharp rise in the damage evolution curve for the natural-state specimen at the damage acceleration stage, while the damage variable develops slowly for the saturated-state specimen.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3662
Author(s):  
Hongzhi Yang ◽  
Liangbiao Lin ◽  
Liqing Chen ◽  
Yu Yu ◽  
Du Li ◽  
...  

The Longtan Formation of the Upper Permian in the Sichuan Basin has become a significant target for shale gas exploration in recent years. Multiple methods, including outcrop observations, thin sections, total organic matter content, X-ray diffraction and scanning electron microscopy were used to investigate the mineralogy, shale lithofacies assemblages and their relationships with the deposition environment. The mineral composition of the Longtan Formation has strong mineral heterogeneity. The TOC values of the Longtan Formation have a wide distribution range from 0.07% to 74.67% with an average value of 5.73%. Four types of shale lithofacies assemblages of the Longtan Formation could be distinguished, as clayey mudstone (CLS), carbonaceous shale (CAS), siliceous shale (SS) and mixed shale (MS) on the basis of mineral compositions. The TOC values of various types of shale lithofacies assemblages in the Longtan Formation varied widely. The shore swamp of the Longtan Formation is most influenced by the terrestrial input and mainly develops CLS and MS. The tidal flat is influenced by the terrestrial input and can also deposit carbonate minerals, developing CLS, CAS and MS. The shallow water melanged accumulation shelf develops CAS and MS, dominated by clay and carbonate minerals. The deep water miscible shelf develops CLS and SS, whose mineral composition is similar to that of the shore swamp, but the quartz minerals are mainly formed by chemical and biological reactions, which are related to the Permian global chert event. The depositional environment of the Longtan Formation controls the shale mineral assemblage of the Longtan Formation and also influences the TOC content.


2021 ◽  
pp. 1-49
Author(s):  
Boling Pu ◽  
Dazhong Dong ◽  
Ning Xin-jun ◽  
Shufang Wang ◽  
Yuman Wang ◽  
...  

Producers have always been eager to know the reasons for the difference in the production of different shale gas wells. The Southern Sichuan Basin in China is one of the main production zones of Longmaxi shale gas, while the shale gas production is quite different in different shale gas wells. The Longmaxi formation was deposited in a deep water shelf that had poor circulation with the open ocean, and is composed of a variety of facies that are dominated by fine-grained (clay- to silt-size) particles with a varied organic matter distribution, causing heterogeneity of the shale gas concentration. According to the different mother debris and sedimentary environment, we recognized three general sedimentary subfacies and seven lithofacies on the basis of mineralogy, sedimentary texture and structures, biota and the logging response: (1) there are graptolite-rich shale facies, siliceous shale facies, calcareous shale facies, and a small amount of argillaceous limestone facies in the deep - water shelf in the Weiyuan area and graptolite-rich shale facies and carbonaceous shale facies in the Changning area; (2) there are argillaceous shale facies and argillaceous limestone facies in the semi - deep - water continental shelf of the Weiyuan area and silty shale facies in the Changning area; (3) argillaceous shale facies are mainly developed in the shallow muddy continental shelf in the Weiyuan area, while silty shale facies mainly developed in the shallow shelf in the Changning area. Judging from the biostratigraphy of graptolite, the sedimentary environment was different in different stages.


2019 ◽  
Vol 20 (1) ◽  
pp. 37
Author(s):  
David Victor Mamengko ◽  
Yoga B.Sendjadja ◽  
Budi Mulyana ◽  
Hermes Panggabean ◽  
Iyan Haryanto ◽  
...  

North Papua Basin is a fore arc basin located in northern coastal of Papua Island. This basin filled by Middle-Upper Miocene turbidite sediment and overlied by Upper Miocene – Quarternary clastic sediment. Upper Miocene – Quaternary clastic sediments (Mamberamo Formation) composed by interbedding conglomerate, sandstone and shale as molasses deposit. A detailed stratigraphic study was performed to identify facies and its association of the Mamberamo Formation to that give a new perspective on the characteristics and development of facies succession of Lower Mamberamo Formation. Result  shows that the Lower Mamberamo Formation consists of three facies: A) cross bedding sandstone (subtidal), B) heterolothic silty shale (intra-tidal), C) carbonaceous shale (supra-tidal) deposited on Late Miocen to Plio-Pleistocene during centra range orogeny (syn-orogeny) as molasses deposits.Keywords: Fore arc basin, North Papua Basin, Mamberamo Formation, molasse deposits.


Author(s):  
Kamil Ahmed Qureshi ◽  
Muhammad Raza Shah ◽  
Ishaque Ali Meerani ◽  
Shah Fahad ◽  
Hamid Hussain ◽  
...  

The Hangu Formation (Paleocene) consists of sandstone, siltstone, carbonaceous shale, coal and laterite. It is well exposed in the Trans Indus Surghar range and the southern Hazara basin. The sandstone is yellowish brown, fine to coarse grained and medium to thick bedded. The sandstone of the Hangu Formation is classified as quartz arenite on the Q-F-L diagram. It is mostly grain supported and are cemented by silica cement. The study of different stratigraphic sections reveal that Hangu Formation can be sub-divided into a number of lithofacies on the basis of sedimentary structures and lithological variations. These include lateritic lithofacies, coal and carbonaceous shale, cross-bedded sandstone, bioclastic limestone and bioturbated sandstone. All these lithofacies are well-developed in the Baroch Nala section of the Surghar range except the lateritic lithofacies which contains a thin bed of ferruginous clay. In the studied sections of the Hazara basin, the lateritic lithofacies is the only well-developed lithofacies present in the area. The coal occurs at two stratigraphic levels in the Baroch Nala section. The lower coal seam is thick and its chemical study indicates higher calorific value and carbon content than the upper coal seam and with low moisture/ash content. On the basis of the calorific value, the coal of the Hangu Formation is characterized as high volatile bituminous. The degree of laterization is strong in the Langrial and Khanpur sections and moderate in Baroch Nala section.


Bothalia ◽  
1977 ◽  
Vol 12 (2) ◽  
pp. 313-317 ◽  
Author(s):  
Éva Kovács-Endrődy

The genus Rubidgea Tate of the fossil family Glossopteridaceae was reduced to a synonym of Glossopteris by Seward (1907). Seward’s conclusion is now confirmed by a study of a wide range of imprints from a quarry near Hammanskraal, South Africa. The upper and lower surface imprints of a single leaf found on a split fragment of carbonaceous shale provides the main evidence presented. The finely striated upper surface imprint of the leaf could be identified with  Rubidgea, whereas the lower surface imprint represents the typical strong venation of a  Glossopteris. The type species of  Rubidgea is transferred to  Glossopteris as  G. mackayi (Tate) Kovacs comb. nov. The characteristics of upper and lower surface imprints of a number of  Glossopteris species are discussed.


Geology ◽  
2007 ◽  
Vol 35 (1) ◽  
pp. e159-e159
Author(s):  
B. Lehmann ◽  
T. F. Nagler ◽  
M. Wille ◽  
H. D. Holland ◽  
J. Mao

Sign in / Sign up

Export Citation Format

Share Document