Estimating shallow soil available water supply for Douglas-fir forests of the coastal Pacific Northwest: climate change impacts

2018 ◽  
Vol 48 (4) ◽  
pp. 421-430 ◽  
Author(s):  
K.M. Littke ◽  
D. Zabowski ◽  
E. Turnblom ◽  
R.B. Harrison

Douglas-fir forests of the coastal Pacific Northwest experience yearly summer droughts; however, the variation in shallow soil available water supply throughout the region is not well understood nor is the effect of future climate change. Soil moisture sensors were installed in 60 Douglas-fir plantation forests over 6 years. Stands were grouped by physiographic regions to describe differences in climate and available water supply. Monthly available water supply (MAWS) (0–50 cm) was calculated as the average daily available moisture content. MAWS was modeled using monthly climate variables, and the equation was then used to predict the change in MAWS due to mild, moderate, and severe climate change predictions. Regional monthly air temperature and precipitation were strongly predictive of MAWS. Mild to severe climate change are predicted to decrease yearly available water supply by 8% to 19%, while summer available water supply will decrease from 25% to 72%. The greatest decreases due to climate change will be found in the coastal regions of Washington and Oregon due to greater negative effects of temperature on available water supply. Climate change, especially the most severe predictions, was shown to have a sizeable effect on shallow soil available water supply in coastal Douglas-fir forests.

Author(s):  
Julie A. Vano ◽  
Meghan M. Dalton

We outline a new method that offers quick insights into how the amount of water in rivers and streams will be impacted by warmer temperatures and future precipitation change. This method yields comparable results to more conventional model-intense climate change impact studies and is faster and cheaper to implement, making it a practical alternative for those exploring future water supply changes in places with limited computational access. Using rivers and streams in the Pacific Northwest of North America as an example, we share what this new method can (and cannot) do, and highlight the steps one could take to quickly begin exploring how climate change could impact their water supply.


2021 ◽  
Vol 13 (22) ◽  
pp. 12380
Author(s):  
Santosh R. Ghimire ◽  
Joel Corona ◽  
Rajbir Parmar ◽  
Gouri Mahadwar ◽  
Raghavan Srinivasan ◽  
...  

Riparian buffer zones (RBZs) provide multiple benefits to watershed ecosystems. We aimed to conduct an extensive sensitivity analysis of the RBZ designs to climate change nutrient and sediment loadings to streams. We designed 135 simulation scenarios starting with the six baselines RBZs (grass, urban, two-zone forest, three-zone forest, wildlife, and naturalized) in three 12-digit Hydrologic Unit Code watersheds within the Albemarle-Pamlico river basin (USA). Using the hydrologic and water quality system (HAWQS), we assessed the sensitivity of the designs to five water quality indicator (WQI) parameters: dissolved oxygen (DO), total phosphorous (TP), total nitrogen (TN), sediment (SD), and biochemical oxygen demand (BD). To understand the climate mitigation potential of RBZs, we identified a subset of future climate change projection models of air temperature and precipitation using EPA’s Locating and Selecting Scenarios Online tool. Analyses revealed optimal RBZ designs for the three watersheds. In terms of watershed ecosystem services sustainability, the optimal Urban RBZ in contemporary climate (1983–2018) reduced SD from 61–96%, TN from 34–55%, TP from 9–48%, and BD from 53–99%, and raised DO from 4–10% with respect to No-RBZ in the three watersheds. The late century’s (2070–2099) extreme mean annual climate changes significantly increased the projected SD and BD; however, the addition of urban RBZs was projected to offset the climate change reducing SD from 28–94% and BD from 69–93% in the watersheds. All other types of RBZs are also projected to fully mitigate the climate change impacts on WQI parameters except three-zone RBZ.


2020 ◽  
Author(s):  
Philip Kraaijenbrink ◽  
Emmy Stigter ◽  
Tandong Yao ◽  
Walter Immerzeel

<p>Meltwater from seasonal snow provides a substantial amount of runoff to many of the rivers that originate in the high mountains of Asia, yet the importance of snow in the region as streamflow component, its changes over the past decades, and its sensitivity to future climatic changes are relatively unknown. To understand future changes in the water supply to the millions of people living downstream, a better understanding of snow dynamics at large scale is key. Using a novel snow model, forced by ERA5 climate reanalysis and calibrated by MODIS remote sensing observations, we generate daily snow water equivalent output at 0.05° resolution covering all major river basins in Asia. We show that between 1979 and 2018 significant and spatially variable changes have occurred in snow meltwater availability and its timing, with melt peaks attenuating and/or advancing in time, and snowmelt seasons shortening. Additionally, our results reveal that snowmelt is a much more important contributor to streamflow than glacier melt in many of Asia's large river basins. In a bottom-up elasticity analysis we project strong changes in snowmelt in the future under changing temperature and precipitation. Sensitivity of snowmelt to climate change varies among basins, however, and actual losses are strongly dependent on the degree of future climate change. Limiting climate change in the current century is therefore crucial in order to sustain the role of seasonal snow packs in Asia’s water supply.</p>


2017 ◽  
Vol 18 (2) ◽  
pp. 431-449 ◽  
Author(s):  
James O. Knighton ◽  
Arthur DeGaetano ◽  
M. Todd Walter

Abstract Watershed flooding is a function of meteorological and hydrologic catchment conditions. Climate change is anticipated to affect air temperature and precipitation patterns such as altered total precipitation, increased intensity, and shorter event durations in the northeastern United States. While significant work has been done to estimate future meteorological conditions, much is currently unknown about future changes to distributions of hydrologic state variables. High-resolution hydrologic simulations of Fall Creek (Tompkins County, New York), a small temperate watershed (324 km2) with seasonal snowmelt, are performed to evaluate future climate change impacts on flood hydrology. The effects of hydrologic state and environmental variables on river flood stage are isolated and the importance of groundwater elevation, unsaturated soil moisture, snowpack, and air temperature is demonstrated. It is shown that the temporal persistence of these hydrologic state variables allows for an influence on watershed flood hydrology for up to 20 days. Finally, six hypothetical climate change forcing scenarios are simulated to estimate the influence of catchment conditions on the watershed runoff response. The possibility of drier summers and wetter springs with a reduced winter snowpack in the Northeast is also simulated. These hydrologic changes influence flood discharge in the opposite direction as climate effects because of a reduced snowpack accumulation and melt time. Strong hydrologic state influence on flood discharge may be most attributable to increased air temperature and decreased precipitation. Hydrologic state variables may change both the location and shape of seasonal flood discharge distributions despite expected consistency in the shape of precipitation statistic distributions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Leclerc ◽  
Franck Courchamp ◽  
Céline Bellard

Abstract Despite their high vulnerability, insular ecosystems have been largely ignored in climate change assessments, and when they are investigated, studies tend to focus on exposure to threats instead of vulnerability. The present study examines climate change vulnerability of islands, focusing on endemic mammals and by 2050 (RCPs 6.0 and 8.5), using trait-based and quantitative-vulnerability frameworks that take into account exposure, sensitivity, and adaptive capacity. Our results suggest that all islands and archipelagos show a certain level of vulnerability to future climate change, that is typically more important in Pacific Ocean ones. Among the drivers of vulnerability to climate change, exposure was rarely the main one and did not explain the pattern of vulnerability. In addition, endemic mammals with long generation lengths and high dietary specializations are predicted to be the most vulnerable to climate change. Our findings highlight the importance of exploring islands vulnerability to identify the highest climate change impacts and to avoid the extinction of unique biodiversity.


2018 ◽  
Vol 163 ◽  
pp. 171-185 ◽  
Author(s):  
Ying Li ◽  
Ting Ren ◽  
Patrick L. Kinney ◽  
Andrew Joyner ◽  
Wei Zhang

2018 ◽  
Vol 11 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Sho Momiyama ◽  
Masaki Sagehashi ◽  
Michihiro Akiba

Abstract Adverse effects of future climate change on water supply systems are of concern. High turbidity caused by abrupt flood, and drought caused by continuous dry days are the major risks. To assess such risks, a comprehensive method to simulate hydrology with high spatiotemporal resolution should be developed. In this study, a series of methods from parameter estimation to future simulation using the Soil and Water Assessment Tool (SWAT) was demonstrated for Sagami Dam reservoir, which is a typical water supply reservoir in Japan. A proposed parameter calibration method by optimizing percent bias followed by optimizing Nash–Sutcliffe efficiency gave good performance of model prediction of the daily average reservoir inflow in the past. Using this model, the changes in inflow under expected climate change were simulated. Three predicted daily climates by the Model for Interdisciplinary Research on Climate version 5 (MIROC5) under three representative concentration pathways, i.e., RCP 2.6, 4.5, and 8.5, in 2081–2100 were used for the simulation, whereas observed daily climate during 1981–2000 was used as the past reference. The risks were discussed by considering their seasonality, indicating increases in flood and drought in June and July, and in February and April, respectively.


2021 ◽  
Author(s):  
NA Cradock-Henry ◽  
J Connolly ◽  
P Blackett ◽  
Judith Lawrence

New research is drawing attention to the potential for climate change to generate cascading impacts and implications across linked human-environment systems, requiring closer accounting of these interactions to anticipate the emergence of surprises and feedbacks. However, there is little practical guidance for those interested in characterising, identifying or assessing cascades, and few empirical examples. In this paper, we elaborate a systems-based methodology to identify and evaluate cascading climate change impacts and implications. We illustrate its application using the case of a participatory process with urban infrastructure managers, facing the legacy effects of damaging earthquakes and the prospect of future climate change. The results show the proposed approach and visualisation of cascades as causal diagrams provides a robust and flexible analytical framework. The use of systems thinking, visual aids, interactive discussion and expert elicitation generated valuable information about potential cascades, their interactions across domains of interest, and the implications for management. The process can provide a basis for further empirical application and advance methodological and conceptual development. Specifically, the systems methodology: • Identifies interdependencies and interconnections which may serve as transmission pathways for climate-related impacts; • Enhanced stakeholders’ understanding of multiple causes and effects of climate change; and • Produced a useful visual aid for stakeholders to explore cascading impacts and implications, and opportunities for intervention.


Sign in / Sign up

Export Citation Format

Share Document