Statе of bioelectric activity of the brain in persons who received acoustic trauma in area of combat actions with a different stage of disorders in the auditory system

Author(s):  
Tetiana Shidlovskaya ◽  
Tamara Shidlovskaya ◽  
Nikolay Kozak ◽  
Lyubov Petruk

Topicality: Providing medical care to patients with combat acoustic trauma remains a topical issue of military medicine. There are works in the literature that show changes in the central nervous system under the influence of intense noise and at acoustic trauma, however, only in individual studies this objective assessment of the functional state of the central nervous system in patients with sensorineural hearing loss is shown as well as the promising use of them. Aim: is to determine the most significant indicators of bioelectric activity of the brain according to the EEG in terms of prediction of the course and ways of co-rejection of sensorineural hearing disorders in persons who have received an acute trauma in the area of fighting. Materials and methods: A group of servicemen with acoustic trauma was examined with the most characteristic, typical forms of audiometric curves – with a downward, precipitous type of the curve, which were divided into three groups depending on the degree of severity of sensorineural deafness. Group 1 – patients with initial non-expressed violations of the function of sound perception in the basal part of the cochlea, group 2 – with a more significant SDP accompanied by violations of speech and supra-vocal audiometry, the 3 groups included patients with severe violations of auditory function, lesions of the mediobasal part of the cochlea, often – with a "break" of perception of tones in the conventional range. A total of 205 patients with acoustic trauma were examined. As a control group, 15 healthy normal people were examined. The EEG study was carried out using the computer electroencephalometry of the firm "DX-System" (Ukraine) according to the generally accepted methodology according to the scheme of electrodes "10-20" Results: In qualitative analysis of electroencephalograms, servicemen with combat acoustic trauma revealed deviations from the norm in the functional state of the central nervous system, expressed in varying degrees, with the most characteristic decreasing of the bioelectric activity of the brain, irritative changes, disorganization and desynchronization of rhythms, more often in the temporal and frontal leads. The most significant changes were in patients with more severe hearing impairment (group 3). These changes indicate signs of severe cortex irritation and deep brain structures in servicemen with acoustic trauma from the combat zone. The analysis of EEG quantitative indicators showed that changes in the bioelectric activity of the cerebral brain in patients with acoustic trauma were manifested by deformation of the basic rhythm with modulation and weakened response to functional loads, especially in the anterior leads. Patients had the significantly (P<0,05) decreased percentage of alfa rhythm in the normal picture of the EEG and the increased representation of beta and delta rhythm, both in the background recording and in the functional loading of photostimulations and hyperventilation . The most significant (P<0,05) changes in bioelectric activity, in comparison with the control group, were observed in individuals 2 and, personally, in 3 groups, with more significant violations of auditory function. We also conducted a comparative analysis of EEG quantitative indicators among the study groups. The results of the research indicate a reliable (P<0,05) difference in the indices in the groups, from the first to the third group there was an increase in the representation of delta, theta and beta rhythm, most in the forward projections, and the decrease in the proportion of alpha rhythm. Moreover, these tendencies were maintained both during the background recording and at the functional loads. Conclusions: Thus, the servicemen with an acoustic trauma revealed objective signs of functional disorders in the cortical and deep structures of the brain. As the auditory function decreases in patients with acoustic trauma and redistribution of the main EEG rhythms in the direction of the growth of manifestations of slow-wave activity on a disorganized background occurs, especially in the frontal and temporal infections. In the subjects we surveyed with severe violations of auditory function, there are significantly more significant changes in the central nervous system than in patients with an initial SDE, which should be taken into account when carrying out treatment and preventive measures aimed at rehabilitation of the victims of combat operations with acoustic trauma.

2021 ◽  
Vol 11 (11) ◽  
pp. 249-265
Author(s):  
B. Lobasyuk ◽  
L. Bartsevich ◽  
A. Zamkovaya

Justification. Mental retardation is a persistent decrease in human cognitive activity against the background of organic damage to the central nervous system. Neurophysiological diagnostics, in particular electroencephalography (EEG), most adequately reflects the morpho-functional state of the central nervous system, which is the basis of the mechanisms of mental activity, and the originality of the bioelectrical activity of the brain can be considered as the main indicator that determines a decrease in the level of intellectual development and, thereby, characterizes this state. This provision actualizes the search for highly informative indicators of the originality of the bioelectrical activity of the brain in children with intellectual disabilities. Purspose. With the use of periodometric analysis investigate EEG’s indicators and interhemispheric asymmetry of rhythms amplitudes in MR patients. Materials and methods. The EEG was recorded in a state of calm wakefulness with closed eyes with Neuron-Spectrum-2 electroencephalograph. Differences in indicators were tracked using the calculation of the coefficient of compliance (CC), EEG functional asymmetry coefficients in amplitude were determined, too. Results. It was revealed that in MR patients the amplitudes of the rhythms were greater than in healthy subjects. The greatest increase was determined in theta rhythm in the anterior temporal and posterior temporal leads in the left hemispheres. Duration indices in the delta, theta and alpha ranges of the EEG in mental retardation compared with the control group were increased, and the indices of the duration of beta rhythms - decreased. When analyzing FMPA in MR persons it turned out that in right-handers the negativeness of FMPA indices increased, and in left-handers there was an increase in the positivity of FMPA indices. Conclusions 1. With mental retardation, the amplitudes of the rhythms were greater than in healthy people. The greatest increase was determined in theta rhythm in the anterior temporal and posterior temporal leads in the left hemispheres. 2. The indices of duration in the delta, theta and alpha ranges of the EEG of MR subjects were increased, and the indices of the duration of beta rhythms – decreased. 3. When analyzing FMPA in MR persons, it turned out that in right-handers the negativeness of FMPA indices increased, and in left-handers there was an increase in the positivity of FMPA indices.


2021 ◽  
Vol 66 (2) ◽  
pp. 29-35
Author(s):  
F. Torubarov ◽  
Z Zvereva ◽  
S. Luk'yanova

Purpose: The aim is to study the bioelectric activity of the brain in the operational workers of the Novovoronezh and Beloyarsk nuclear power plants with a low level of psychophysiological adaptation. Material and methods: An EEG study of 101 operational employees of the NPP was conducted, visual and spectral analyses were used. EEG indicators of individuals with a low level of psychophysiological adaptation and low functional activity of structural and functional formations of the central nervous system were compared with those of individuals with a high level of adaptation, high functional activity of structural and functional formations of the central nervous system. Results: Visual analysis of individuals with a low level of psychophysiological adaptation revealed abnormal EEG indicators, indicating functional disorders of the central nervous system. The greatest violations were revealed in the structural and functional formation responsible for the central regulation of the cardiovascular system. A comparative assessment of the spectral power of the EEG at different levels of psychophysiological adaptation revealed a state of tension (tense adaptation) observed in individuals with both low and high levels of adaptation. The similarity between the structural and functional formation "central regulation of the cardiovascular system" with low functional activity and a low level of psychophysiological adaptation in terms of the number of abnormal EEG indicators can be considered as evidence of its greatest contribution to the formation of a low level of adaptation.The evaluation of interhemispheric interactions in structural and functional formations at their low and high activity, as well as at low and high levels of adaptation, suggested that the formation of a high level of psychophysiological adaptation as an integral characteristic of the main role played by the formation of the "Cortex" and "central regulation of the cardiovascular system". In the formation of a low level of psychophysiological adaptation as an integral characteristic, the main role is played by the formations "cortex" and "cortical-subcortical interaction". Conclusion: A violation of the bioelectric activity of the brain may be one of the pathogenetic mechanisms of reduced adaptation. The presence of statistically significant differences in EEG indicators in individuals with low and high levels of adaptation, revealed by visual and spectral analysis, allows us to consider these indicators as informative not only in terms of identifying deviations in the diagnosis of functional disorders, but also in assessing the effectiveness of rehabilitation and health measures.


Author(s):  
Svetlana A. Perepelitsa

In order to reduce postnatal dysfunction of the central nervous system and prevent irreversible consequences, the concept of early rehabilitation of newborns has been formulated and implemented. When planning a rehabilitation program, an individual approach to the child is required, taking into account the characteristics of his development. A comprehensive assessment of the anatomical and functional state of the brain of a newborn with the help of high-precision neuroimaging technologies that can be used at different stages of rehabilitation treatment deserves special attention.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


Author(s):  
F. L. Azizova ◽  
U. A. Boltaboev

The features of production factors established at the main workplaces of shoe production are considered. The materials on the results of the study of the functional state of the central nervous system of women workers of shoe production in the dynamics of the working day are presented. The level of functional state of the central nervous system was determined by the speed of visual and auditory-motor reactions, installed using the universal device chronoreflexometer. It was revealed that in the body of workers of shoe production there is an early development of inhibitory processes in the central nervous system, which is expressed in an increase in the number of errors when performing tasks on proofreading tables. It was found that the most pronounced shift s in auditory-motor responses were observed in professional groups, where higher levels of noise were registered in the workplace. The correlation analysis showed a close direct relationship between the growth of mistakes made in the market and the decrease in production. An increase in the time spent on the task indicates the occurrence and growth of production fatigue.Funding. The study had no funding.Conflict of interests. The authors declare no conflict of interests.


Author(s):  
A. S. Radilov ◽  
S. A. Solntseva ◽  
I. E. Shkaeva ◽  
S. A. Dulov ◽  
E. V. Vivulanets ◽  
...  

Toxicity and hazard assessment of dioctyl terephthalate (DOTP) was performed in acute, subacute, and chronic experiments, and its principal toxicometry parameters were determined.It was found that on single exposure DOTP exhibits low toxicity and hazard. No resorptive and irritant effects on skin and mucous membrane of eyes were detected in animal experiments. The single inhalation exposure threshold limit value was set at 300 mg/m3, based on the results of monitoring of the functional state of the central nervous system and myocardium and hematological parameters.Thirty-day subacute experiments (oral administration, inhalation exposure, and skin applications) revealed no accumulation of the compound.Four-month chronic exposure to DOTP aerosols (concentration 96,8 mg/m3) caused disorder of the functional state of the central nervous system and myocardium, changes in the hematological and biochemical parameters, gas and acid-base status of the blood, and morphological changes in the lungs and heart. Embryotoxic, genotoxic and gonadotoxic effects were not detected.The chronic inhalation exposure threshold limit value for DOTP (Limch) was set at 18,6 mg/m3, and the concentration of 3,4 mg/m3 was found to be ineffective.The maximum allowable concentration of DOTP in the air of the working area was set at 3,0 mg/m3, hazard class 3.


2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


2018 ◽  
Vol 17 (2) ◽  
pp. 132-143 ◽  
Author(s):  
Mehmet Eray Alcigir ◽  
Halef Okan Dogan ◽  
Begum Yurdakok Dikmen ◽  
Kubra Dogan ◽  
Sevil Atalay Vural ◽  
...  

Background & Objective: Aroclor 1254 is a widespread toxic compound of Polychlorinated Biphenyls (PCBs), which can create significant nervous problems. No remedies have been found to date. The aim of this study was to reveal the damage that occurs in the central nervous system of rat pups exposed to Aroclor 1254 in the prenatal period and to show the inhibiting effect of curcumin, which is a strong anti-oxidant and neuroprotective substance. Method: The study established 3 groups of adult female and male Wistar albino rats. The rats were mated within these groups and the offspring rats were evaluated within the group given Aroclor 1254 only (n=10) and the group was given both Aroclor 1254 and curcumin (n=10) and the control group (n=10). The groups were compared in respect of pathomorphological damage. The immunohistochemical evaluation was made of 8-hydroxdeoxyguanosine (8-OHdG), 4-hydroxynoneal (4HNE), myelin basic protein (MBP) expressions and TUNEL reaction. The biochemical evaluation was made of the changes in the TAS-TOS and Neuron Specific Enolase (NSE) levels. Damage was seen to have been reduced with curcumin in the 8OHdG and TUNEL reactions, especially in the forebrain and the midbrain, although the dosage applied did not significantly change TAS and TOS levels. Consequently, it was understood that Aroclor 1254 caused damage in the central nervous system of the pup in the prenatal period, and curcumin reduced these negative effects, particularly in the forebrain and the midbrain. Conclusion: It was concluded that curcumin could be a potential neuroprotective agent and would be more effective at higher doses.


Sign in / Sign up

Export Citation Format

Share Document