Physiological Mechanism Regulating Light-induced Mesocotyl Elongation by Polyamine Oxidase (PAO) in Maize

2016 ◽  
Vol 42 (5) ◽  
pp. 734 ◽  
Author(s):  
Tong-Zhen ZHANG ◽  
Yong-Sheng LI ◽  
Yue LI ◽  
Hai-Mei YAO ◽  
Juan ZHAO ◽  
...  
2020 ◽  
Vol 134 (4) ◽  
pp. 389-401
Author(s):  
Carla El-Mallah ◽  
Omar Obeid

Abstract Obesity and increased body adiposity have been alarmingly increasing over the past decades and have been linked to a rise in food intake. Many dietary restrictive approaches aiming at reducing weight have resulted in contradictory results. Additionally, some policies to reduce sugar or fat intake were not able to decrease the surge of obesity. This suggests that food intake is controlled by a physiological mechanism and that any behavioural change only leads to a short-term success. Several hypotheses have been postulated, and many of them have been rejected due to some limitations and exceptions. The present review aims at presenting a new theory behind the regulation of energy intake, therefore providing an eye-opening field for energy balance and a potential strategy for obesity management.


1978 ◽  
Vol 39 (03) ◽  
pp. 751-758 ◽  
Author(s):  
B L Sheppard ◽  
J Bonnar

SummaryThe fibrinolytic activity of the intimal cells of decidual spiral arteries and the syncytium of placental villi was studied by electron microscopy in ten normal full-term human pregnancies using a modification of the fibrin slide technique. Endothelial cells lining the intima of the decidual spiral arteries showed a considerably greater fibrinolytic activity than intimal cytotrophoblast and the syncytiotrophoblast showed no activity.The replacement of endothelial cells by an intimal lining of cytotrophoblast, and the presence of cytotrophoblast in the media, appears to play an important role in the reduction of the fibrinolytic activity of the vessel. This inhibition of fibrinolytic activity in the utero-placental arteries may be the physiological mechanism which controls fibrin deposition in these vessels and on the placental villi.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 86-93
Author(s):  
Dhirajsingh Sumersingh Rajput

Evolution is continuous process of changes in structural and physiological mechanism in living being. Microbes/pathogens can evolve naturally or artificially and become resistant to various medicines. Novel coronavirus is such evolved pathogen of coronavirus group. Enough strong immunity is needed to prevent or survive from COVID-19 pandemic. Ayurveda provides ways for evolving physiological responses to built immunity. Present work is brief attempt to increase insight in this filed.Present review was done based on simple theory of evolution, recent updates regarding prevention of COVID-19, Ayurveda aspect toward infectious diseases and Ayurveda ways towards prevention of infectious diseases with special reference to COVID-19. Person with impaired immunity is more susceptible for COVID-19 and thus immunity is an important preventing factor. Ayurveda Rasayana (rejuvanation) herbs, Yoga exercises, Pranayama (special breathing exercise), daily regimens and personal hygiene guidelines can be helpful strategies in controlling the spread of COVID-19.The preventive aspects of pandemic situations are narrated in Ayurveda with enough details. These ways need to be scientifically explored and refined for precision. As prevention is always better than cure hence Ayurveda ways can be considered for future strategies to avoid pandemics such as COVID-19.  There is great need of research on Ayurveda medicines on COVID-19 like diseases.


2018 ◽  
Vol 44 (1) ◽  
pp. 82 ◽  
Author(s):  
Jin-Fei ZHANG ◽  
Xia LI ◽  
Ya-Fei HE ◽  
Yin-Feng XIE

Author(s):  
I. V. Cheretaev ◽  
D. R. Khusainov ◽  
E. N. Chuyan ◽  
M. Yu. Ravaeva ◽  
A. N. Gusev ◽  
...  

The purpose of the review is to summarize current literature data and the results of our own research on the analgesic and anti-inflammatory effects of acetylsalicylic acid, as well as the physiological mechanisms underlying them. This acid is the most studied reference representative of salicylates, which is convenient to consider the physiological effects characteristic in general for this group of chemical and medicinal products. Acetylsalicylic acid has analgesic properties against thermal pain and pain caused by electrical stimuli, as well as a pronounced anti-inflammatory effect. The realization of these properties depends on the peculiarities of aspirin metabolism in the body, ion and synaptic mechanisms for controlling the functional state of the cell, neurotransmitter systems of the сentral nervous system, and mechanisms of peripheral and сentral analgesia. Analgesic properties of acetylsalicylic acid founded not only in normal, but also in ultra-small doses. Various physical and especially chemical factors significantly change their effects. This increases the interest in studying the analgesic activity of salicylates and their physiological mechanisms, since such studies can serve as a basis for creating new non-steroidal anti-inflammatory drugs with low toxicity and high safety for patients, and improve the strategy of their practical use. Currently, the most detailed study of the physiological mechanism of analgesic and anti-inflammatory action of aspirin and its main metabolite – salicylic acid. However, it should be note that despite the abundance of existing data obtained in scientific studies of the effects of aspirin and its practical use, there are a number of unexplained aspects of the action of this drug, the mechanism of which has not yet been deciphered. The continuing interest in the effects and mechanisms of action of this drug and in connection with the expansion of its use evidenced by a consistently high number of scientific publications on aspirin in the most famous foreign and domestic publications. At the same time, the number of publications about aspirin is an order of magnitude higher than about any other drug known to humanity.


2017 ◽  
Vol 4 (1) ◽  
pp. e000200 ◽  
Author(s):  
Miyuki Okuda ◽  
Nobuya Tanaka ◽  
Kazuyuki Naito ◽  
Takao Kumada ◽  
Koji Fukuda ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 7012
Author(s):  
Fernanda Hernandez-Gonzalez ◽  
Rosa Faner ◽  
Mauricio Rojas ◽  
Alvar Agustí ◽  
Manuel Serrano ◽  
...  

Fibrosing interstitial lung diseases (ILDs) are chronic and ultimately fatal age-related lung diseases characterized by the progressive and irreversible accumulation of scar tissue in the lung parenchyma. Over the past years, significant progress has been made in our incomplete understanding of the pathobiology underlying fibrosing ILDs, in particular in relation to diverse age-related processes and cell perturbations that seem to lead to maladaptation to stress and susceptibility to lung fibrosis. Growing evidence suggests that a specific biological phenomenon known as cellular senescence plays an important role in the initiation and progression of pulmonary fibrosis. Cellular senescence is defined as a cell fate decision caused by the accumulation of unrepairable cellular damage and is characterized by an abundant pro-inflammatory and pro-fibrotic secretome. The senescence response has been widely recognized as a beneficial physiological mechanism during development and in tumour suppression. However, recent evidence strengthens the idea that it also drives degenerative processes such as lung fibrosis, most likely by promoting molecular and cellular changes in chronic fibrosing processes. Here, we review how cellular senescence may contribute to lung fibrosis pathobiology, and we highlight current and emerging therapeutic approaches to treat fibrosing ILDs by targeting cellular senescence.


Sign in / Sign up

Export Citation Format

Share Document