scholarly journals Effect of Eyes Open/Closed on Plantar Pressure during Static Balance Evaluation

2021 ◽  
Vol 31 (1) ◽  
pp. 17-23
Author(s):  
强 林 ◽  
武德 陈 ◽  
煜欣 郑 ◽  
婉晨 廖 ◽  
海东 黄 ◽  
...  
Author(s):  
Danielle M. Torp ◽  
Abbey C. Thomas ◽  
Tricia Hubbard-Turner ◽  
Luke Donovan

Context Altered biomechanics displayed by individuals with chronic ankle instability (CAI) is a possible cause of recurring injuries and posttraumatic osteoarthritis. Current interventions are unable to modify aberrant biomechanics, leading to research efforts to determine if real-time external biofeedback can result in changes. Objective To determine the real-time effects of visual and auditory biofeedback on functional-task biomechanics in individuals with CAI. Design Crossover study. Setting Laboratory. Patients or Other Participants Nineteen physically active adults with CAI (7 men, 12 women; age = 23.95 ± 5.52 years, height = 168.87 ± 6.94 cm, mass = 74.74 ± 15.41 kg). Intervention(s) Participants randomly performed single-limb static balance, step downs, lateral hops, and forward lunges during a baseline and 2 biofeedback conditions. Visual biofeedback was given through a crossline laser secured to the dorsum of the foot. Auditory biofeedback was given through a pressure sensor placed under the lateral foot and connected to a buzzer that elicited a noise when pressure exceeded the set threshold. Cues provided during the biofeedback conditions were used to promote proper biomechanics during each task. Main Outcome Measure(s) We measured the location of center-of-pressure (COP) data points during balance with eyes open and eyes closed for each condition. Plantar pressure in the lateral column of the foot during functional tasks was extracted. Secondary outcomes of interest were COP area and velocity, time to boundary during static balance, and additional plantar-pressure measures. Results Both biofeedback conditions reduced COP in the anterolateral quadrant while increasing COP in the posteromedial quadrant of the foot during eyes-open balance. Visual biofeedback increased lateral heel pressure and the lateral heel and midfoot pressure-time integral during hops. The auditory condition produced similar changes during the eyes-closed trials. Auditory biofeedback increased heel pressure during step downs and decreased the lateral forefoot pressure-time integral during lunges. Conclusions Real-time improvements in balance strategies were observed during both external biofeedback conditions. Visual and auditory biofeedback appeared to effectively moderate different functional-task biomechanics.


2020 ◽  
Author(s):  
Danielle M Torp ◽  
Abbey C Thomas ◽  
Tricia Hubbard-Turner ◽  
Luke Donovan

Abstract Context: Altered biomechanics displayed by individuals with chronic ankle instability (CAI) is a potential cause for recurring injuries and posttraumatic osteoarthritis. Current interventions are unable to modify aberrant biomechanics leading research efforts to determine if real-time external biofeedback is capable of producing changes. Objective: Determine real-time effects of visual and auditory biofeedback on functional task biomechanics in individuals with CAI Design: Crossover study Setting: Laboratory Patients or Other Participants: Nineteen physically active adults with CAI (23.95±5.52 years; 168.87±6.94 cm; 74.74±15.41 kg, female=12) volunteered. Intervention: Participants randomly performed single-leg static balance, step-downs, lateral-hops, and forward-lunges during a baseline and two biofeedback conditions. Auditory biofeedback was given through a pressure sensor placed under the lateral foot connected to a buzzer eliciting a noise when pressure exceeded the set threshold. Visual biofeedback was given through a cross-line laser secured to the dorsum of the foot. Cues given during the biofeedback conditions were used to promote proper biomechanics during each respective task. Main Outcome Measure(s): Location of center of pressure (COP) data points during balance with eyes-open and closed during each condition. Plantar pressure during functional tasks were extracted in the lateral column of the foot. Secondary outcomes of interested were COP area and velocity, time-to-boundary during static balance, and additional plantar pressure measures. Results: Both biofeedback conditions reduced COP in the anterolateral quadrant while increasing COP in the posteromedial quadrant of the foot during eyes open balance, the auditory condition produced similar changes during eyes closed trials. Auditory biofeedback increased heel pressure during step-downs, while decreasing lateral forefoot pressure-time integral during lunges. Visual biofeedback increased lateral heel pressure and increased lateral heel and midfoot pressure-time integral during hops. Conclusions: Real-time improvements in balance strategies were observed during both external biofeedback conditions. Visual and auditory biofeedback appear to effectively moderate different functional task biomechanics.


Author(s):  
Koen Andre Horstink ◽  
Lucas Henricus Vincentius van der Woude ◽  
Juha Markus Hijmans

AbstractPatients with diabetic peripheral neuropathy (DPN) usually have reduced somatosensory information and altered perception in feet and ankles. Somatosensory information acts as feedback for movement control and loss of somatosensation leads to altered plantar pressure patterns during gait and stance. Offloading devices are used to reduce peak plantar pressure and prevent diabetic foot ulcers. However, offloading devices can unfortunately have negative effects on static and dynamic balance. It is important to investigate these unwanted effects, since patient with DPN already are at high risk of falling and offloading devices could potentially increase this risk. The aim of this systematic review is to investigate the effects of plantar offloading devices used for ulcer prevention on their role in static and dynamic balance control in patients with DPN. PubMed and Embase were systematically searched using relevant search terms. After title selection, abstract selection, and full-text selection only five articles could be included for further analysis. Two articles included static balance measurements, two articles included dynamic balance measurements, and one article included both. Results suggested that static balance control is reduced when rocker bottom shoes and different insole configurations are used, however, toe-only rockers showed less evidence for reduced static balance control. There was no evidence for reduced dynamic balance control in combination with offloading devices. However, these results should be interpreted with care, since the number of studies was very small and the quality of the studies was moderate. Future research should evaluate balance in combination with different offloading devices, so that clinicians subscribing them are more aware of their potential unwanted consequences.


2013 ◽  
Vol 103 (6) ◽  
pp. 489-497 ◽  
Author(s):  
Saba Sadra ◽  
Adam Fleischer ◽  
Erin Klein ◽  
Gurtej S. Grewal ◽  
Jessica Knight ◽  
...  

Background: Hallux valgus (HV) is associated with poorer performance during gait and balance tasks and is an independent risk factor for falls in older adults. We sought to assess whether corrective HV surgery improves gait and balance. Methods: Using a cross-sectional study design, gait and static balance data were obtained from 40 adults: 19 patients with HV only (preoperative group), 10 patients who recently underwent successful HV surgery (postoperative group), and 11 control participants. Assessments were made in the clinic using body-worn sensors. Results: Patients in the preoperative group generally demonstrated poorer static balance control compared with the other two groups. Despite similar age and body mass index, postoperative patients exhibited 29% and 63% less center of mass sway than preoperative patients during double-and single-support balance assessments, respectively (analysis of variance P =.17 and P =.14, respectively [both eyes open condition]). Overall, gait performance was similar among the groups, except for speed during gait initiation, where lower speeds were encountered in the postoperative group compared with the preoperative group (Scheffe P = .049). Conclusions: This study provides supportive evidence regarding the benefits of corrective lower-extremity surgery on certain aspects of balance control. Patients seem to demonstrate early improvements in static balance after corrective HV surgery, whereas gait improvements may require a longer recovery time. Further research using a longitudinal study design and a larger sample size capable of assessing the long-term effects of HV surgical correction on balance and gait is probably warranted. (J Am Podiatr Med Assoc 103(6): 489–497, 2013)


2017 ◽  
Vol 24 (1) ◽  
pp. 10-14 ◽  
Author(s):  
Grzegorz Bednarczuk ◽  
Ida Wiszomirska ◽  
Jolanta Marszałek ◽  
Izabela Rutkowska ◽  
Waldemar Skowroński

AbstractIntroduction. In elite sport, athletes are required to maintain appropriate body posture control despite a number of destabilising factors. The functions of body posture control are monitored by the central nervous system that constantly receives information from the vestibular and somatosensory systems as well as from the visual analyser. Visual impairment may contribute to a decrease in the level of motor abilities and skills; however, it does not prevent visually impaired individuals from taking up physical activity. Therefore, this study sought to assess the static balance of visually impaired goalball players and shooters. Material and methods. The study included 37 goalball players and 20 shooters. A force platform was used to assess static balance. The study participants performed tests: standing on both feet with eyes open (BFEO) and closed (BFEC) (30 s), single left- and right-leg stance with eyes open (SLEO and SREO) as well as single left- and right-leg stance with eyes closed (SLEC and SREC). Statistical analyses were carried out using the following parameters: centre of pressure (CoP) path length [cm], CoP velocity [m/s], and the surface area of the stabilogram [cm2]. Results. No significant differences were found between goalball players and shooters in static balance levels. However, such differences were observed after taking into account the number of athletes who were capable of performing particular tests. Conclusions. The findings indirectly confirm that there is a correlation between the type of physical activity and balance levels in visually impaired individuals. Further research ought to include tests performed on an unstable surface.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Hossein Talebi ◽  
Mohammad Taghi Karimi ◽  
Seyed Hamid Reza Abtahi ◽  
Niloofar Fereshtenejad

Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments.Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50±7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed.Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (pvalue > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (pvalue < 0.05).Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Stefanie John ◽  
Katja Orlowski ◽  
Kai-Uwe Mrkor ◽  
Jürgen Edelmann-Nusser ◽  
Kerstin Witte

BACKGROUND: Following amputation, patients with lower limb amputations (LLA) are classified into different functional mobility levels (K-levels) ranging from K0 (lowest) to K4 (highest). However, K-level classification is often based on subjective criteria. Objective measures that are able to differentiate between K-levels can help to enhance the objectivity of K-level classification. OBJECTIVE(S): The goal of this preliminary cross-sectional study was to investigate whether differences in hip muscle strength and balance parameters exist among patients with transfemoral amputations (TFA) assigned to different K-levels. METHODOLOGY: Twenty-two participants with unilateral TFA were recruited for this study, with four participants assigned to K1 or K2, six assigned to K3 and twelve assigned to K4. Maximum isometric hip strength of the residual limb was assessed in hip flexion, abduction, extension, and adduction using a custom-made diagnostic device. Static balance was investigated in the bipedal stance on a force plate in eyes open (EO) and eyes closed (EC) conditions. Kruskal-Wallis tests were used to evaluate differences between K-level groups. FINDINGS: Statistical analyses revealed no significant differences in the parameters between the three K-level groups (p>0.05). Descriptive analysis showed that all hip strength parameters differed among K-level groups showing an increase in maximum hip torque from K1/2-classified participants to those classified as K4. Group differences were also present in all balance parameters. Increased sway was observed in the K1/2 group compared to the K4 group, especially for the EC condition. CONCLUSION: Although not statistically significant, the magnitude of the differences indicates a distinction between K-level groups. These results suggest that residual limb strength and balance parameters may have the potential to be used as objective measures to assist K-level assignment for patients with TFA. This potential needs to be confirmed in future studies with a larger number of participants. Layman's Abstract Patients with lower limb amputation (LLA) are classified into different mobility levels, so-called K-levels, which are ranging from K0 (lowest) to K4 (highest). K-level classification is relevant for the patients as it determines the type of prosthetic components available. However, K-level can vary greatly based on the clinician or orthopedic technician individual assessment. Objective data from physical performance tests can help to improve K-level classification. Therefore, muscle strength tests of the amputation stump as well as balance tests were performed in this study to determine whether these parameters have the potential to support K-level classification. Twenty-two participants with a thigh amputation participated in the study (four K1/2-, six K3- and twelve K4-participants). Hip muscle strength on the amputation side was assessed as well as static balance in the double leg stance with eyes open and eyes closed. Analysis of the data showed that all hip strength parameters differed between the K-level groups, with maximum strength increasing from the K1/2 group to the K4 group. Group differences were also seen in the balance parameters with greater body sway for the K1/2 group when compared to the K4 group, especially when participants had their eyes closed. These results show that muscle strength tests of the residual limb and static balance tests may serve as additional measures to improve K-level assignment for patients with LLA. This was only an initial study and further studies with a larger number of participants are required to confirm these results. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/37456/28905 How To Cite: John S, Orlowski K, Mrkor K.U, Edelmann-Nusser J, Witte K. Differences in hip muscle strength and static balance in patients with transfemoral amputations classified at different K-levels: A preliminary cross-sectional study. Canadian Prosthetics & Orthotics Journal. 2022; Volume 5, Issue 1, No.5. https://doi.org/10.33137/cpoj.v5i1.37456 Corresponding Author: Stefanie John,Department of Sports Science, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany.E-Mail: [email protected] ID: https://orcid.org/0000-0001-6722-7195


Author(s):  
Y. Khanjari ◽  
E.A. Ameri

Background: Aging is a stage of life that increases the risk of physical diseases, some of which are chronic and can affect different dimensions of life’s quality. Hydrotherapy is used to treat rheumatic, orthopedic and neurological disorders. It has been the subject of investigations regarding balance and gating recovery in elderly people. Objective: To evaluate the effect 8 weeks water cure program with aquatic devices on static balance and velocity of gait in elderly men.Methods: : Fifteen old men were chosen purposely by age mean and Std 58±6.5, length 167.12±7.35 cm, weight 75.64±7.64. . We used the Sharpened Romberg test (static balance with eyes open and close) and Timed Up & Go (for evaluating velocity of gait). we used a selected program in water with aquatic devices in 8 weeks. Water exercise session included of three parts warm up, main part of exercise, and cool down. we analyzed the achieved data by a correlated t-test at a meaningful level (p≤0.05).Results: Among the post-test and pre-test Romberg test ( p≤013) and the velocity of gait (p≤005) were recovered meaningfully after the program.Conclusions: The results showed that participating in an exercise in water program with aquatic devices on a regular basis can be considered as an effective and reliable method to increase balance, and it can promote quality and velocity of gait among these aged men.


Author(s):  
Clint Hansen ◽  
Maximilian Beckbauer ◽  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Julius Welzel ◽  
...  

Static balance is a commonly used health measure in clinical practice. Usually, static balance parameters are assessed via force plates or, more recently, with inertial measurement units (IMUs). Multiple parameters have been developed over the years to compare patient groups and understand changes over time. However, the day-to-day variability of these parameters using IMUs has not yet been tested in a neurogeriatric cohort. The aim of the study was to examine day-to-day variability of static balance parameters of five experimental conditions in a cohort of neurogeriatric patients using data extracted from a lower back-worn IMU. A group of 41 neurogeriatric participants (age: 78 ± 5 years) underwent static balance assessment on two occasions 12–24 h apart. Participants performed a side-by-side stance, a semi-tandem stance, a tandem stance on hard ground with eyes open, and a semi-tandem assessment on a soft surface with eyes open and closed for 30 s each. The intra-class correlation coefficient (two-way random, average of the k raters’ measurements, ICC2, k) and minimal detectable change at a 95% confidence level (MDC95%) were calculated for the sway area, velocity, acceleration, jerk, and frequency. Velocity, acceleration, and jerk were calculated in both anterior-posterior (AP) and medio-lateral (ML) directions. Nine to 41 participants could successfully perform the respective balance tasks. Considering all conditions, acceleration-related parameters in the AP and ML directions gave the highest ICC results. The MDC95% values for all parameters ranged from 39% to 220%, with frequency being the most consistent with values of 39–57%, followed by acceleration in the ML (43–55%) and AP direction (54–77%). The present results show moderate to poor ICC and MDC values for IMU-based static balance assessment in neurogeriatric patients. This suggests a limited reliability of these tasks and parameters, which should induce a careful selection of potential clinically relevant parameters.


Author(s):  
Atiya A. Shaikh ◽  
Rutuja D. Joshi

Background: Background and need of study- Influence of gender on balance is still controversial. Previous researchers have done studies using traditional methods. These methods may fail to detect subtle changes in balance difference. A tool like posturography which is highly specific may help to for accurate assessment and hence precise conclusion. Aim was to compare balance scores of male and female elderly using modified Clinical Test of Sensory Interaction on Balance (CTSIB).Methods: There were 56 healthy elderly ambulating without an assistive device and free from any neurological and orthopedic problems were assessed for their balance abilities using mCTSIB of balance master(standing on firm surface with eyes open, with eyes closed, standing on foam surface with eyes open and with eyes closed). Sway velocity was assessed using Unpaired t test.Results: There was a no significant difference in scores of modified CTSIB between male and female elderly ( p value>0.005).Conclusions: Gender has no effect on static balance abilities between male and female elderly while performing modified clinical test of sensory interaction on balance.


Sign in / Sign up

Export Citation Format

Share Document