scholarly journals Seaweed-Based Interventions for Diabetic Complications: An Analytical Discourse

Author(s):  
Gour Gopal Satpati ◽  
Navonil Mal ◽  
Ruma Pal

Modern sedentary lifestyle has given rise to a number of health issues; diabetes mellitus is one of them, another worldwide emergency, which is usually attributed either by deficiency or by insensitivity of insulin hormone; the master-regulator of blood glucose level. Seaweeds are rich reservoirs of a plethora of bioactive compounds with a great assortment of therapeutic potential. The goal of this communication is to represent the state-of-the-art about what is known for the anti-hyperglycemic properties recognized in seaweeds, emphasizing about their assets of several bioactive principles, their modes of action over targets of pharmacological interest, in addition to their precise extraction procedures. Various bioactive molecules from seaweed origin, mainly polyphenols, can inhibit several drug targets like α-glucosidase, α-amylase, aldose reductase, protein tyrosine phosphatase 1B, angiotensin-converting enzymes and dipeptidyl peptidase-4 to achieve good glycemic control.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hao-Wei Teng ◽  
Man-Hsin Hung ◽  
Li-Ju Chen ◽  
Mao-Ju Chang ◽  
Feng-Shu Hsieh ◽  
...  

Abstract Protein tyrosine phosphatase 1B (PTP1B) is known to promote the pathogenesis of diabetes and obesity by negatively regulating insulin and leptin pathways, but its role associated with colon carcinogenesis is still under debate. In this study, we demonstrated the oncogenic role of PTP1B in promoting colon carcinogenesis and predicting worse clinical outcomes in CRC patients. By co-immunoprecipitation, we showed that PITX1 was a novel substrate of PTP1B. Through direct dephosphorylation at Y160, Y175 and Y179, PTP1B destabilized PITX1, which resulted in downregulation of the PITX1/p120RasGAP axis. Interestingly, we found that regorafenib, the approved target agent for advanced CRC patients, exerted a novel property against PTP1B. By inhibiting PTP1B activity, regorafenib treatment augmented the stability of PITX1 protein and upregulated the expression of p120RasGAP in CRC. Importantly, we found that this PTP1B-dependant PITX1/p120RasGAP axis determines the in vitro anti-CRC effects of regorafenib. The above-mentioned effects of regorafenib were confirmed by the HT-29 xenograft tumor model. In conclusion, we demonstrated a novel oncogenic mechanism of PTP1B on affecting PITX1/p120RasGAP in CRC. Regorafenib inhibited CRC survival through reserving PTP1B-dependant PITX1/p120RasGAP downregulation. PTP1B may be a potential biomarker predicting regorafenib effectiveness, and a potential solution for CRC.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5073 ◽  
Author(s):  
Hamza Mechchate ◽  
Imane Es-Safi ◽  
Mohammed Bourhia ◽  
Andrii Kyrylchuk ◽  
Abdelfattah El Moussaoui ◽  
...  

Background: Olea europea L. subsp. europaea var. sylvestris (Mill) Lehr (Oleaster) is a wild endemic olive tree indigenous to the Mediterranean region. Olea europea leaves represent a natural reservoir of bioactive molecules that can be used for therapeutic purposes. Aim of the study: This work was conducted to study antidiabetic and antihyperglycemic activities of flavonoids from oleaster leaves using alloxan-induced diabetic mice. The mode of action of flavonoids against eight receptors that have a high impact on diabetes management and complication was also investigated using molecular docking. Results: During 28 days of mice treatment with doses 25 and 50 mg/kg b.w, the studied flavonoids managed a severe diabetic state (<450 mg/dL), exhibiting a spectacular antidiabetic and antihyperglycemic activity, and improved mice health status compared to diabetic control. The in-silico mode of action of oleaster flavonoids revealed the inhibition of protein tyrosine phosphatase 1B (PTP1B), Dipeptidyl-peptidase 4 (DPP4), α-Amylase (AAM), α-Glucosidase inhibition, Aldose reductase (AldR), Glycogen phosphorylase (GP), and the activation of free fatty acid receptor 1 (FFAR1). Conclusion: The findings obtained in the present work indicate that the flavonoids from the oleaster may constitute a safe multi-target remedy to treat diabetes.


2018 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
R.M. Perez-Gutierrez

Methanol extract from Lippia graveolens (Mexican oregano) was studied in order to identify inhibitory bioactives for protein tyrosine phosphatase 1B (PTP1B). Known flavone as lutein (1), and another flavone glycoside such as lutein-7-o-glucoside (2), 6-hydroxy-lutein-7-ohexoside (3) and lutein-7-o-ramnoide (4) were isolated from methanol extract of aerial parts of the Lippia graveolens. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR, MS and compared with spectroscopic data previously reported. These flavones were evaluated for PTP1B inhibitory activity. Among them, compounds 1 and 3 displayed potential inhibitory activity against PTP1B with IC50 values of 7.01 ± 1.25 μg/ml and 18.4 μg/ml, respectively. In addition, compound 2 and 4 showed moderate inhibitory activity with an IC50 value of 23.8 ± 6.21 and 67.8 ± 5.80 μg/ml respectively. Among the four compounds, luteolin was found to be the most potent PTP1B inhibitor compared to the positive control ursolic acid, with an IC50 value of 8.12 ± 1.06 μg/ml. These results indicate that flavonoids constituents contained in Lippia graveolens can be considered as a natural source for the treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document