scholarly journals Potential Sources, Formation Routes, and Health Effects of Nitrogen Dioxide (NO2) on Indoor Air Quality, Human Health, Safety, and the Environment: A Review

2021 ◽  
pp. 94-103

Since human beings spend 80-90% of the day inside houses, educational and recreation centers, office blocks, or automobiles, the quality of air within these buildings or structures is crucial for human health and safety. Hence, indoor air quality (IAQ) highlights the general characteristics of indoor air that affect the state of health, thermal comfort, and well-being of humans. Despite numerous regulatory standards, framework policies, and monitoring plans proposed for IAQ, the occurrence of indoor pollutants including radon (Rn), ozone (O3), and oxides of carbon, sulfur, and nitrogen have become common. Many studies contend that nitrogen dioxide (NO2) is a major indoor air pollutant and one of the most poisonous on Earth. It is a reddish-brown gas generated from the oxidation of nitrogen oxides (NOx) and molecular oxygen or O3 or the high-temperature combustion of solid fuels. This paper presents an overview of the potential sources, formation routes, and health effects of NO2. According to reviewed literature, the occurrence, concentrations, and ratios of NO2 in the indoor environment are affected by residential factors, weather/climate, and proximity to NO2 sources indoors, such as burners, ovens, and stoves. Furthermore, long-term exposure to NO2 causes diabetes, heart, cardiovascular, hypertension diseases, severe cough, hemoptysis, pediatric lung edema and, more recently, fatalities arising from COVID-19. Therefore, the overdependence on polluting fuels that generate NO2 must be minimized or eliminated to improve IAQ and protect human health, safety, and the environment. Future design plans for constructing kitchens, homes, offices, automobiles, factories, and power plants must incorporate smart sensors or ventilation systems for detecting, monitoring, or removal of exhaust gases, including NO2.

2021 ◽  
pp. 53-59

Indoor air quality has a significant impact on human health as people spend more time indoors. As a common indoor air pollutant, acetaldehyde is considered toxic when exposed to it for a prolonged period. The aim of this study is the enhancement of the photocatalytic activity of ZnWO4 with a monoclinic wolframite structure for degradation of gaseous acetaldehyde by modifying its surface with Bi2WO6 layered structure. The mechanisms behind the enhanced photocatalytic activity and the pathways for acetaldehyde photodegradation over the Bi2WO6-modified ZnWO4 photocatalyst are discussed


2014 ◽  
Vol 29 (suppl.) ◽  
pp. 52-58
Author(s):  
Franz Roessler ◽  
Jai Azzam ◽  
Volker Grimm ◽  
Hans Hingmann ◽  
Tina Orovwighose ◽  
...  

The energy conservation regulation provides upper limits for the annual primary energy requirements for new buildings and old building renovation. The actions required could accompany a reduction of the air exchange rate and cause a degradation of the indoor air quality. In addition to climate and building specific aspects, the air exchange rate is essentially affected by the residents. Present methods for the estimation of the indoor air quality can only be effected under test conditions, whereby the influence of the residents cannot be considered and so an estimation under daily routine cannot be ensured. In the context of this contribution first steps of a method are presented, that allows an estimation of the progression of the air exchange rate under favourable conditions by using radon as an indicator. Therefore mathematical connections are established that could be affirmed practically in an experimental set-up. So this method could provide a tool that allows the estimation of the progression of the air exchange rate and in a later step the estimation of a correlating progression of air pollutant concentrations without limitations of using the dwelling.


Author(s):  
Mohd Saleem ◽  
Mohd Adnan Kausar ◽  
Fahmida Khatoon ◽  
Sadaf Anwar ◽  
Syed Monowar Alam Shahid ◽  
...  

In many aspects of life quality, bio-contaminants and indoor air quality have had catastrophic consequences, including a negative impact on human health with an increased prevalence of allergic respiratory reactions, asthma, and infectious diseases. We aimed to evaluate the quality of indoor air environment and find out the association between human health and indoor air pollution and also to assess the physical health status of a group of Saudi and non-Saudi populations during this pandemic. Also, we aimed to assess the most common health condition or symptoms associated with ventilation. A questionnaire was distributed online to test indoor air quality, ventilation status, common signs and symptoms of any allergy or mental status and their relationship to certain variables. A total of 362 respondents were included. Before living in the current home, flu or Influenza and chapped lips were more prevalent than allergies and chapped lips signs while living in the current home. (12.2% , 10.8% vs. 18.5% , 13.55% before and after respectively) Multiple colds were the second most common symptom (10.2%). Hoarse voice and headaches were the least common symptoms experienced; each constituted 4.4%. During the COVID-19 Pandemic, most respondents wore a facemask, approximately 76.5%; and almost one-third of respondents had bright natural light inside the current home (43.1%). The presence of natural light within the current home was significantly associated with symptoms experienced during living in the current house (p<0.05). Natural sunlight exposure could decrease allergic symptoms and minor health problems associated with poor ventilation and air quality indoors. In current living homes, the majority of respondents never used air purifiers (72.9 percent). In order to get attention from people to enhance the quality and ventilation mechanism of indoor air, special care and awareness of the effects of the use of air purifiers on human health is needed.


Indoor Air ◽  
2017 ◽  
Vol 27 (4) ◽  
pp. 816-828 ◽  
Author(s):  
P. S. J. Lakey ◽  
A. Wisthaler ◽  
T. Berkemeier ◽  
T. Mikoviny ◽  
U. Pöschl ◽  
...  

2014 ◽  
Vol 40 (3) ◽  
pp. 259-268 ◽  
Author(s):  
Ana Maria da Conceição Ferreira ◽  
Massano Cardoso

Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations.


2020 ◽  
Vol 39 (5) ◽  
pp. 7053-7069
Author(s):  
Jagriti Saini ◽  
Maitreyee Dutta ◽  
Gonçalo Marques

Indoor air pollution (IAP) has become a serious concern for developing countries around the world. As human beings spend most of their time indoors, pollution exposure causes a significant impact on their health and well-being. Long term exposure to particulate matter (PM) leads to the risk of chronic health issues such as respiratory disease, lung cancer, cardiovascular disease. In India, around 200 million people use fuel for cooking and heating needs; out of which 0.4% use biogas; 0.1% electricity; 1.5% lignite, coal or charcoal; 2.9% kerosene; 8.9% cow dung cake; 28.6% liquified petroleum gas and 49% use firewood. Almost 70% of the Indian population lives in rural areas, and 80% of those households rely on biomass fuels for routine needs. With 1.3 million deaths per year, poor air quality is the second largest killer in India. Forecasting of indoor air quality (IAQ) can guide building occupants to take prompt actions for ventilation and management on useful time. This paper proposes prediction of IAQ using Keras optimizers and compares their prediction performance. The model is trained using real-time data collected from a cafeteria in the Chandigarh city using IoT sensor network. The main contribution of this paper is to provide a comparative study on the implementation of seven Keras Optimizers for IAQ prediction. The results show that SGD optimizer outperforms other optimizers to ensure adequate and reliable predictions with mean square error = 0.19, mean absolute error = 0.34, root mean square error = 0.43, R2 score = 0.999555, mean absolute percentage error = 1.21665%, and accuracy = 98.87%.


2011 ◽  
Vol 20 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Qi Zheng ◽  
Donghoon Lee ◽  
Sungho Lee ◽  
Jeong Tai Kim ◽  
Sunkuk Kim

As illnesses attributable to deteriorating indoor air quality (IAQ) increase, people are becoming more aware of the health effects of IAQ because most people in Korea spend >80% of their time indoors. Notably, the IAQ of apartment buildings accounts for a massive share of the construction volume in Korea, which is a highly critical issue. Evaluation of health effects of IAQ would influence not only the statutory criteria for air quality improvement but could also contribute to the development of building design standards. In addition, such evaluation supports quantification efforts for the selection of wholesome construction materials and techniques. Evaluation of the health effects of IAQ is a complex exercise that would require comprehensive consideration of factors such as the concentrations and occurrences of various known, harmful indoor pollutants, ventilation performance in a building and temperature/humidity. Evaluation involves not only quantitative assessment of pollutants but also evaluation of IAQ based on human perception. The aim of this study was to develop a model to evaluate IAQ in quantitative terms based on health impact, but with an emphasis on apartment buildings.


JAMA ◽  
1986 ◽  
Vol 255 (9) ◽  
pp. 1201
Author(s):  
Robert J. McCunney

Sign in / Sign up

Export Citation Format

Share Document