Formulation and Evaluation of Polymeric Nanoparticles of an Antiviral Drug for Gastroretention

Author(s):  
Ankit Anand Kharia ◽  
A K Singhai ◽  
R Verma

The aim of present study was to formulate and evaluate nanoparticles of acyclovir by using different hydrophilic polymers. Acyclovir was selected as a suitable drug for gastro-retentive nanoparticles due to its short half life, low bioavailability, high frequency of administration, and narrow absorption window in stomach and upper part of GIT. The nano-precipitation method was used to prepare nanoparticles so as to avoid both chlorinated solvents and surfactants to prevent their toxic effect on the body. Nanoparticles of acyclovir were prepared by using hydrophilic polymers such as bovine serum albumin, chitosan, and gelatin. The prepared formulations were then characterized for particle size, polydispersity index, zeta potential, loading efficiency, encapsulation efficiency and drug-excipient compatibility. The prepared nanoparticulate formulations of acyclovir with different polymers in 1:1 ratio have shown particle size in the range of 250.12-743.07 nm, polydispersity index (PDI) in the range of 0.681-1.0, zeta potential in the range of -14.2 to +33.2 mV, loading efficiency in the range of 8.74-17.54%, and entrapment efficiency in the range of 55.7%-74.2%. Nanoparticulate formulation prepared with chitosan in 1:1 ratio showed satisfactory results i.e. average particle size 312.04 nm, polydispersity index 0.681, zeta potential 33.2 mV, loading efficiency 17.54%, and entrapment efficiency 73.4%. FTIR study concluded that no major interaction occurred between the drug and polymers used in the present study.  

2018 ◽  
Vol 8 (6) ◽  
pp. 82-86 ◽  
Author(s):  
Surendranath Betala ◽  
M Mohan Varma ◽  
K Abbulu

The aim of present study was to formulate and evaluate nanoparticles of carvedilol by using different hydrophilic polymers. Carvedilol was selected as a suitable drug for gastro- retentive nanoparticles due to its short half life, low bioavailability, high frequency of administration, and narrow absorption window in stomach and upper part of GIT. The nano-precipitation method was used to prepare nanoparticles so as to avoid both chlorinated solvents and surfactants to prevent their toxic effect on the body. Nanoparticles of  carvedilol were prepared by using hydrophilic polymers such as HPMC K100M, chitosan, and gelatin. The prepared formulations were then characterized for particle size, polydispersity index, zeta potential, loading efficiency, encapsulation efficiency and drug-excipient compatibility. The prepared nanoparticulate formulations of carvedilol  with different polymers in 1:1 ratio have shown particle size in the range of 250.12-743.07 nm, polydispersity index (PDI) in the range of 0.681-1.0, zeta potential in the range of -14.2 to +33.2 mV, loading efficiency in the range of 8.74-17.54%, and entrapment efficiency in the range of 55.7%-74.2%. Nanoparticulate formulation prepared with chitosan in 1:1 ratio showed satisfactory results i.e. average particle size 312.04 nm, polydispersity index 0.681, zeta potential 33.2 mV, loading efficiency 17.54%, and entrapment efficiency 73.4%. FTIR study concluded that no major interaction occurred between  the drug and polymers used in the present study. Keywords: Nanoparticles; gastro-retentive; nano-precipitation, polydispersity index, zeta potential; entrapment efficiency.


2018 ◽  
Vol 1 (3) ◽  
pp. 121-124
Author(s):  
Tresna Lestari ◽  
Tita Nofianti ◽  
Lilis Tuslinah ◽  
Ruswanto Ruswanto ◽  
Firda Adityas

Bunga kecombrang diketahui memiliki aktivitas sebagai antioksidan. Teknologi formulasi nanopartikel diharapkan dapat meningkatkan aktivitas biologis dari ekstrak.Penelitian ini dilakukan untuk memperoleh nanopartikel dari ekstrak bunga kecombrang dengan karakteristik yang baik.Pembuatan nanopartikel dilakukan dengan penambahan poloksamer dengan variasi konsentrasi 1, 3 dan 5%. Formulasi selanjutnya dianalisis meliputi ukuran partikel rata-rata, indeks polidispersitas, potensial zeta, efisiensi penjeratan dan morfologi partikel menggunakan SEM.Hasil karakterisasi diperoleh ukuran partikel rata-rata ketiga formula berada dalam rentang 134,7-193,1 nm, indeks polidispersitas <0,5 untuk semua formula, nilai potensial zeta antara -41,0 - (-24,3) mV dan efisiensi penjeratan terhadap senyawa flavonoid 89,93-97,99 %. Berdasarkan hasil SEM nanopartikel diketahui berbentuk bulat dengan permukaan yang halus.Berdasarkan hasil penelitian disimpulkan bahwa nanopartikel ekstrak bunga kecombrang dengan penambahan poloksamer 1, 3 dan 5% memiliki karakteristik yang baik dan memenuhi syarat sebagai sediaan nanopartikel.   Kecombrang flowers are known to have antioxidant activity. Nanoparticle formulation technology is expected to increase the biological activity of the extract. This study was conducted to obtain the nanoparticles from kecombrang flower extract with good characteristics. The preparation of nanoparticles was carried out by adding poloxamer with various concentrations of 1, 3 and 5%.Furthermore, the formula were analyzed, including the average particle size, polydispersity index, zeta potential, entrapment efficiency and particle morphology using SEM. The results of the characterization obtained an average particle size of the three formulas in the range of 134.7-193.1 nm, polydispersity index <0 , 5 for all formulas, zeta potential values ​​in range of -41.0 - (-24.3) mV and entrapment efficiency of flavonoid compounds of 89.93-97.99%The results of SEM examination showed that nanoparticles  was in round form with a smooth surface. Based on the results of the study,  itcan be concluded that kecombrang flower extract nanoparticles with the addition of poloxamer 1, 3 and 5% had good characteristics and met the criteria of  nanoparticle


Author(s):  
Pankaj P Nerker ◽  
Hitendra Mahajan ◽  
Sagar Deore ◽  
Pradyumn Ige

Nanosuspensions provide convenient formulations for improving the bioavailability and drug delivery. The objective of the investigation was to develop stable nanosuspension formulation of ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Ramipril is a potent antihypertensive drug, which act by inhibiting the angiotensin-converting enzyme. Nanosuspension was developed by antisolvent precipitation followed by high-pressure homogenization using hydrophilic polymers such as HPMC E5, HPMC E15, PVP K30, PVP K25, and PVA. The resulting nanosuspension was transformed into dry powder by freeze-drying process. Among all five formulations a formulation was choosen on the basis of results obtained from comparative study between different polymers based nanosuspension formulation of ramipril. The nanosuspension prepared was then evaluated for particle size, polydispesivity index, zeta potential, entrapment efficiency, saturated solubility study, scanning electron microscopy, differential scanning colorometry, and X ray diffraction. The combination of soya lecithin and pluronic F-68 as stabilizers yield nanosuspension with the smallest average particle size. The formulation of ramipril based on HPMC E 15 (Formulation B) shown enhanced dissolution rate. In which more than 60% of the drug was dissolved in the first 20 min compared to less than 25% of the pure drug within the same time period. The increase in the in vitro dissolution rate, nano size may favourably affect bioavailability.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 439 ◽  
Author(s):  
Hibah M. Aldawsari ◽  
Nabil A. Alhakamy ◽  
Rayees Padder ◽  
Mohammad Husain ◽  
Shadab Md

Resveratrol (RES) is a polyphenolic compound which has shown beneficial pharmacological effects such as anti-inflammatory, antioxidant, and anti-cancer effects. However, poor aqueous solubility, bioavailability, and low stability are the major limitations to the clinical application of RES. Therefore, in the present study, chitosan (CS) coated PLGA nanoparticles of RES (CS-RES-PLGA NPs) was developed, characterized and its anticancer activity was evaluated in the H1299 lung carcinoma cell line. The effects of the increase in CS coating and cryoprotectant concentration on particle size, polydispersity index (PDI) and zeta potential (ZP) were determined. The particle size, PDI, ZP and entrapment efficiency of the optimized CS-RES-PLGA NPs were found to be 341.56 ± 7.90 nm, 0.117 ± 0.01, 26.88 ± 2.69 mV and 75.13% ± 1.02% respectively. The average particle size and ZP showed a steady increase with an increase in CS concentration. The increase in positive zeta potential is evident for higher CS concentrations. The effect of trehalose as cryoprotectant on average particle size was decreased significantly (p < 0.05) when it was increased from 1%−5% w/v. TEM and SEM showed uniform particle distribution with a smooth surface and spherical shape. The CS coating provides modulation of in vitro drug release and showed a sustained release pattern. The stability of RES loaded PLGA NPs was improved by CS coating. CS-coated NPs showed greater cytotoxicity and apoptotic activities compared to free RES. The CS coated NPs had a higher antioxidant effect than the free RES. Therefore, CS coated PLGA NPs could be a potential nanocarrier of RES to improve drug solubility, entrapment, sustain release, stability and therapeutic application.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3031
Author(s):  
Wan-Yi Liu ◽  
Chia-Chen Lin ◽  
Yun-Shan Hsieh ◽  
Yu-Tse Wu

This study aimed to design an effective nanoparticle-based carrier for the oral delivery of fisetin (FST) with improved biopharmaceutical properties. FST-loaded nanoparticles were prepared with polyvinyl alcohol (PVA) and poly(lactic-co-glycolic acid) (PLGA) by the interfacial deposition method. A central composite design of two independent variables, the concentration of PVA and the amount of PLGA, was applied for the optimization of the preparative parameter. The responses, including average particle size, polydispersity index, encapsulation efficiency, and zeta potential, were assessed. The optimized formulation possessed a mean particle size of 187.9 nm, the polydispersity index of 0.121, encapsulation efficiency of 79.3%, and zeta potential of −29.2 mV. The morphological observation demonstrated a globular shape for particles. Differential scanning calorimetry and powder X-ray diffraction studies confirmed that the encapsulated FST was presented as the amorphous state. The dissolution test indicated a 3.06-fold increase for the accumulating concentrations, and the everted gut sac test showed a 4.9-fold gain for permeability at the duodenum region. In conclusion, the optimized FST-loaded nanoparticle formulation in this work can be developed as an efficient oral delivery system of FST to improve its biopharmaceutic properties.


2021 ◽  
Vol 5 (4) ◽  
pp. 369-374
Author(s):  
Rini Ambarwati ◽  
Yulianita Yulianita

Pandan leaves have been researched and have effectiveness in the treatment of burns. The process of healing burns takes a long time and cause a hard tissue because it loses its elasticity, making it difficult to penetrate. In this study, pandanus leaves were formulated into the nanovesicle carrier system, namely trasfersom. Transfersomes have the ability to deform, namely the ability to reduce the particle size 5-10 times from the original size when passing through the gaps between cells so that transfersom can increase the penetration of active substances. The three formulas used are based on the ratio of concentrations of trasfersome vesicles, namely phospholipids and span 80. Formula 1 is (90:10), Formula 2 (85:15) and Formula 3 (80:20). The best formula is determined based on transfersom characterization, including particle size and PDI (solidispersity index), zeta potential, entrapment efficiency, deformability, and TEM particle morphology. The results showed that Formula 3 (80:20) is the most stable formula with an average particle size of 730.1 ± 4.9 nm, PDI value <0.7, zeta potential - 9.94 ± 1.02 mV, efficiency absorption 80.23%, and the deformability value 6.225.  


2019 ◽  
Vol 7 (2) ◽  
pp. 6-10
Author(s):  
Muhammad Dzakwan ◽  
Eko Pramukantoro Ganet ◽  
Mauludin Rachmat ◽  
Saleh Wikarsa

Fisetin (3,3,4,7-tetrahydroxyflavone) is a natural antioxidant that has shown to posses anticancer, antioxidant and anti-inflammatory properties. However, the poor solubility leads to poor bioavailability and limits its development.The aim of the research is to investigate the effect of fisetin nanosuspension using a nanoprecipitation technique and additional stabilizers polysorbat 80, SLS, PVA and Eudragit on particle size average, polydispersity index and zeta potential.The suspensions of microcrystalline FIS were prepared by a nanoprecipitation technique with different proportion of stabilizers fixed. The nanosuspension produced was then characterized using Photon Correlation Spectroscopy (PCS) in  term of particle size distribution, polydispersity index, zeta potential and morphology nanosuspensiom (TEM). Result showed fisetin nanosuspension were successfully prepared by anti-solvent precipitation with additional stabilizer SLS and polysorbat 80. The nanosuspension containing polysorbat 80 showed smaller average particle size of 225.7 nm ± 1.31, a polydispersity index of 0.272 ±0.02 and zeta potential -39.3 ± 0.26 was obtained. Conclusion, FIS nanosuspension successfully prepared by nanoprecipitation tecnique with the polysorbate 80 as stabilizer and ethanol as solvent were spherical in shape..


2020 ◽  
Vol 17 (1) ◽  
pp. 172-183
Author(s):  
Nandanwadkar Shrikrishna Madhukar Hema ◽  
Mastiholimath Vinayak Shivamurthy ◽  
Pulija Karunakar

Introduction: Capsaicin (8-methy-N-vanillyl-6-nonenamide), a potential analgesic derived from Capsicum annuum (Chili peppers), widely used from ancient times for its pharmacological activities such as anti-inflammatory, anti-oxidant and analgesic and provides relief from migraine and diabetes. But for obvious reasons, capsaicin cannot be administered directly. The present work was designed with a focus to comply with mandatory requirement in various pharmacopeias to know the actual content of API present in final formulations. The formulation (TS3) consisting of 3% lipid, with 4:6 ratio of the polymer and solvent, was found to be the optimized formulation, which gave the best evaluation with regard to the particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies and highest drug entrapment efficiency (68.34±4.24)%. The prepared transferosome formulation was subjected to characterization by validated HP-TLC method consisting of N-Hexane: Tert- Iso-butyl-methyl ether in ratio (5:15) v/v. Linearity was performed in the range of 50-1500 ng/spot with LOD/LOQ 50 ng and 150 ng, with regression analysis (R) of 99.91%. Recovery analysis was performed at 3 different levels at 80, 100 and 120 with an average recovery of 106.97%, respectively. Till now, no analytical method has been reported, associated with the characterization of pharmaceutical nano-forms (Capsaicin), like transferosomes. Thus, the maiden validated HP-TLC method for concurrent analysis of capsaicin as API in nano-transferosome may be employed in process quality control of formulations containing the said API. Background: The irritability and adverse effects post application, leading to inflammation and neural pain at the site of administration of newly Capsaicin API and its chemical entities and marketed formulations are usually related to poor permeability, leading to drug complex reactions in the development phases or therapeutic failure along with the quantification of the same in blood plasma. However, advancement in drug formulations with the use of polymer: alcohol ratio and modernized analytical techniques for the quantification of Pharmaceutical APIs seems to be emerging and promising for overcoming pain and related inflammatory complications by formulating the APIs in Transferosome formulation with Validated HP-TLC technique being used as an effective economic and precise tool for quantitative analysis of APIs in their respective nano-forms. Objective: The study proposes a novel standardized method development and validation of pharmaceutical nanoforms with Capsaicin as API. Method: Capsaicin Transferosomes were formulated using Ultra probe sonication by utilizing different proportions of phospholipid 90G dissolved in a mixture of ethanol and propylene glycol. The formulation was subjected to Dynamic Light Scattering (DLS) technique for nano-particle analysis followed by characterization with respect to particle size, polydispersity index, zeta potential and entrapment efficiency. The morphological study of vesicles was determined using SEM and TEM. A Validated HP-TLC method for the identification and determination of Capsaicin in transferosomes formulation was performed as per the ICH guidelines. Results: The formulation gave the best evaluation for particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies (SEM & TEM) and highest drug entrapment efficiency (68.34±4.24)%. DSC thermograms and FTIR spectral patterns confirmed no physical interaction by polymers with API. The prepared formulation was then characterized using HP-TLC method. The best resolution was found in NHexane: Tert-Isobutyl methyl ether in a ratio of 5:15 v/v. The Rf was found to be 0.3±0.03. Linearity was performed in a range of 50-1500 ng/spot, with regression analysis (R) of 99.91% Further, recovery analysis was done at 3 different levels as 80, 100 and 120 with an average recovery of 106.97%. The LOD/LOQ was found to be 50 and 150 ng, respectively. Precision was carried out in which % RSD was found to be precise and accurate. Conclusion: The outcomes of the present study suggested that the proposed novel formulation analyzed by Validated planar chromatographic technique (HP-TLC) for Capsaicin quantification in nanoforms may be employed as a routine quality control method for the said API in various other formulations.


Author(s):  
RISA AHDYANI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using chitosan (CS) and sodium alginate (SA). Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics. Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM delivery of infantile hemangioma treatment.


Author(s):  
ARTI MAJUMDAR ◽  
NIDHI DUBEY ◽  
NITIN DUBEY

Objective: The aim of the present study is to develop docetaxel-loaded nano liquid crystals (NLCs) to enhanced and effective delivery of the drug to the skin cancer. Methods: NLCs bearing docetaxel were prepared by an emulsification solvent diffusion method. The formulated NLCs were characterized for average particle size, polydispersity index (PDI) Zeta potential, entrapment efficiency and in vitro drug release study. The prepared formulations were studied for it's in vitro cell line and cell uptake study. Results: It was revealed that the average size of NLCs was found 178.3±5.07, PDI was 0.189, percent entrapment efficiency was found 71.3±2.49 and Zeta potential was found-17.3±2.4. In vitro release determined by Franz diffusion cell was found 61.6±3.2% after 72 hr. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that Docetaxel loaded NLCs were giving more cytotoxicity as compared to the plain drug. The cell uptake study was found enhanced uptake of fluorescein isothiocyanate (FITC) loaded NLCs in comparison to plain FITC. Docetaxel and docetaxel-loaded NLCs showed 28.3±0.3 and 39.3±1.3 growth inhibition respectively after 48h upon incubation at 0.5 µg/ml concentration (p<0.05). Conclusion: The result of the studies was concluded that NLCs can be used as impending drug delivery system which may enhance the drug uptake and maintain the drug level for longer period of time and it is potential carrier system which can be used for the treatment of skin diseases like cancer.


Sign in / Sign up

Export Citation Format

Share Document