scholarly journals Maternal imprinting, mitochondrial DNA, nuclear DNA and Alzheimer’s disease

2021 ◽  
Vol 1 (2) ◽  
pp. 121-126
Author(s):  
Alberto Pérez-Mediavilla ◽  
Marta Zamarbide

Familial early-onset Alzheimer’s disease (AD) is more probable in individuals coming from mothers diagnosed with AD than from fathers diagnosed with AD. Studies in animal models have shown maternal imprinting due to the transmission to the embryo of altered material in the ovum. In the case of transgenic animals harboring a mutated form of the human amyloid precursor protein (APP), offspring from crosses with wild-type (WT) fathers and transgenic mothers display more abnormalities than offspring from crosses with transgenic fathers and WT mothers. Expression of the mutated APP in the ovum may lead to alterations that may be genetic and/or epigenetic in the nuclear and/or the mitochondrial DNA. These modifications that are transmitted to the new living beings affect more mitochondrial proteins and, therefore, the mitochondrial function may be affected in adulthood by trends present in the ovum.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Katharina L. Neumeister ◽  
Matthias W. Riepe

Background. Incipient Alzheimer's disease is often disguised as depressive disorder. Over the course of AD, depressive symptoms are even more frequent. Hence, treatment with antidepressants is common in AD. It was the goal of the present study to assess whether two common antidepressants with different mechanisms of action affect spatial learning in a transgenic animal model of Alzheimer's disease.Methods. We assessed spatial memory of male wild-type and B6C3-Tg(APPswe,PSEN1dE9)85Dbo (APP23) transgenic animals in a complex dry-land maze. Animals were treated with citalopram (10 mg/kg) and bupropion (20 mg/kg).Results. Moving and resting time until finding the goal zone decreased in 4.5-month-old sham-treated wild-type animals and, to a lesser extent, in APP23 animals. Compared with sham-treated APP23 animals, treatment with bupropion reduced resting time and increased speed. On treatment with citalopram, moving and resting time were unchanged but speed decreased. Length of the path to the goal zone did not change on either bupropion or citalopram.Conclusion. Bupropion increases psychomotor activity in APP23 transgenic animals, while citalopram slightly reduces psychomotor activity. Spatial learning per se is unaffected by treatment with either bupropion or citalopram.


2021 ◽  
Vol 14 (12) ◽  
pp. 1218
Author(s):  
Christian Viel ◽  
Adrian T. Brandtner ◽  
Alexander Weißhaar ◽  
Alina Lehto ◽  
Marius Fuchs ◽  
...  

Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In mitochondria isolated from rat hippocampi, we found reductions of complex I and oxidative phosphorylation in transgenic rats. Further impairments, also of complex II, were observed in aged (wild-type and transgenic) rats. Treatment with a “cocktail” containing magnesium orotate, benfotiamine, folic acid, cyanocobalamin, and cholecalciferol did not affect mitochondrial activities in wild-type rats but restored diminished activities in transgenic rats to wild-type levels. Glucose, lactate, and pyruvate levels were unchanged by age, genetic background, or treatment. Using microdialysis, we also investigated extracellular concentrations of acetylcholine that were strongly reduced in transgenic animals. Again, ACh levels in wild-type rats did not change upon treatment with nutrients, whereas the cocktail increased hippocampal acetylcholine levels under physiological stimulation. We conclude that TgF344-AD rats display a distinct mitochondrial and cholinergic dysfunction not unlike the findings in patients suffering from AD. This dysfunction can be partially corrected by the application of the “cocktail” which is particularly active in aged rats. We suggest that the TgF344-AD rat is a promising model to further investigate mitochondrial and cholinergic dysfunction and potential treatment approaches for AD.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
James G. McLarnon

Animal models of Alzheimer’s disease (AD) which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid-β(Aβ) into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection ofAβ1-42peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furthermore, pharmacological inhibition of inflammatory reactivity is demonstrated by a broad spectrum of drugs with a common endpoint in conferring neuroprotection in peptide-injected animals. Peptide-injection models provide a focus on glial cell responses to direct peptide injection in rat brain and offer advantages in the study of the mechanisms underlying neuroinflammation in AD brain.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Marta Zamarbide ◽  
Francisco J. Gil-Bea ◽  
Paul Bannenberg ◽  
Eva Martínez-Pinilla ◽  
Juan Sandoval ◽  
...  

2014 ◽  
Author(s):  
Joseph P. Barsuglia ◽  
Michelle J. Mather ◽  
Hemali V. Panchal ◽  
Aditi Joshi ◽  
Elvira Jimenez ◽  
...  

2018 ◽  
Author(s):  
Natalia Acosta-Baena ◽  
Carlos Mario Lopera-Gómez ◽  
Mario César Jaramillo-Elorza ◽  
Margarita Giraldo-Chica ◽  
Mauricio Arcos-Burgos ◽  
...  

2019 ◽  
Vol 16 (11) ◽  
pp. 1007-1017 ◽  
Author(s):  
James G. McLarnon

A combinatorial cocktail approach is suggested as a rationale intervention to attenuate chronic inflammation and confer neuroprotection in Alzheimer’s disease (AD). The requirement for an assemblage of pharmacological compounds follows from the host of pro-inflammatory pathways and mechanisms present in activated microglia in the disease process. This article suggests a starting point using four compounds which present some differential in anti-inflammatory targets and actions but a commonality in showing a finite permeability through Blood-brain Barrier (BBB). A basis for firstchoice compounds demonstrated neuroprotection in animal models (thalidomide and minocycline), clinical trial data showing some slowing in the progression of pathology in AD brain (ibuprofen) and indirect evidence for putative efficacy in blocking oxidative damage and chemotactic response mediated by activated microglia (dapsone). It is emphasized that a number of candidate compounds, other than ones suggested here, could be considered as components of the cocktail approach and would be expected to be examined in subsequent work. In this case, systematic testing in AD animal models is required to rigorously examine the efficacy of first-choice compounds and replace ones showing weaker effects. This protocol represents a practical approach to optimize the reduction of microglial-mediated chronic inflammation in AD pathology. Subsequent work would incorporate the anti-inflammatory cocktail delivery as an adjunctive treatment with ones independent of inflammation as an overall preventive strategy to slow the progression of AD.


Sign in / Sign up

Export Citation Format

Share Document