Thermochemical Stability of Some Transformer Oils- Flammable Gas Formation Due to the Thermal Aging

2018 ◽  
Vol 69 (7) ◽  
pp. 1621-1627
Author(s):  
Iosif Lingvay ◽  
Valerica Stanoi ◽  
Livia Carmen Ungureanu ◽  
Ana Maria Luchian ◽  
Gabriela Oprina

The amounts of flammable gases formed in some transformer oils during the long-term storage (1000 hours) at 110 � 3�C in closed containers (limited access to atmospheric oxygen) were determined qualitatively and quantitatively by gas chromatography technique. The comparative experimental results showed that when two types of mineral oils, one synthetic oil and two types of vegetable oils are in simultaneously contact with copper and insulating paper, the total amount of flammable gases formed by thermal aging is about 40 times higher in the mineral oils than in the ester based oils. It has also been established that the electrical-use copper foil catalyses the formation processes of the flammable gases, the maximum effect being for the mineral oils (an increase of 8 times of ethane and 25 times for methane gases). It has further been observed that the contact with the insulating paper during the thermal treatment of the ester based oils does not influence the formation of flammable gases, compared with the mineral oils where the amount of the formed gases is doubled.

2018 ◽  
Vol 68 (12) ◽  
pp. 2881-2885
Author(s):  
Iosif Lingvay ◽  
Gabriela Oprina ◽  
Livia Carmen Ungureanu ◽  
Alexandra Pica ◽  
Valerica Stanoi

The behaviour of copper and insulation paper in various electrical insulating fluids (transformer oils) exposed to thermal ageing at 110�30C for 1000 hours in closed vessels (without access to atmospheric oxygen) has been studied. The processing of the comparative experimental data revealed in all cases that the concentration of dissolved oxygen in the investigated oils decreases exponentially during the heat treatment. In the presence of the copper foil, the oxygen is almost depleted (the dissolved oxygen concentration is approaching zero), indicating a higher affinity of the copper to oxygen than the affinity to oxygen of the investigated oils. In the presence of the copper foil and / or of the insulation paper, the degradation processes of the mineral oils have a pronounced character, explained by the catalytic activity of the Cu2O film that has been formed and by the paper degradation, respectively. A high thermo-oxidative stability was noticed in the case of natural triglyceride oils, particularly for the synthetic ester-based oil.


Author(s):  
W. L. Daugherty

Many radioactive material shipping packages incorporate cane fiberboard overpacks for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. These properties continue to be tracked, with the goal of developing a model for predicting a service life under long-term storage conditions.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

Sign in / Sign up

Export Citation Format

Share Document