scholarly journals Efficient Removal of Toxic mMetal Ions (Pb(II) and Hg(II) Ions in Single Component Systems by Adsorption on Romanian Clay Material

2020 ◽  
Vol 71 (7) ◽  
pp. 37-47 ◽  
Author(s):  
Bianca Azamfire ◽  
Dumitru Bulgariu ◽  
Laura Bulgariu

In this study, a local natural clay material was used for the efficient removal of Pb(II)ions and Hg(II) ions from aqueous media, in batch system. The adsorptive potential of clay material was testes at different initial solution pH, adsorbent dosage, contact time and initial heavy metal ions concentration and room temperature (20  2C). The highest adsorption efficiency of clay material was found at initial pH of 7.0 in case of Pb(II) ions, and 2.0 in case of Hg(II) ions, while the adsorbent dosage had the same value (4 g/L) for both metal ions. The adsorption equilibrium is very fast and was reach within 10 min. The modelling of experimental data showed that the adsorption processes followed the Freundlich isotherm model and pseudo-second order kinetic model. Detailed analysis of the experimental data indicate that the retention of Pb(II) and Hg(II) ions from aqueous solution on clay materials involves two processes, one of adsorption and the other of precipitation, whose succession depends on the speciation form of the metal ion in aqueous solution. However, the high adsorption capacity and short contact time are important characteristics which suggest the potential use of this clay material in environmental remediation processes.

2019 ◽  
Vol 233 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Khalida Naseem ◽  
Rahila Huma ◽  
Aiman Shahbaz ◽  
Jawaria Jamal ◽  
Muhammad Zia Ur Rehman ◽  
...  

Abstract This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.


2020 ◽  
Vol 13 (2) ◽  
pp. 15-27 ◽  
Author(s):  
Bolanle M. Babalola ◽  
Adegoke O. Babalola ◽  
Cecilia O. Akintayo ◽  
Olayide S. Lawal ◽  
Sunday F. Abimbade ◽  
...  

Abstract. In this study, the adsorption of Ni(II) and Cu(II) ions from aqueous solutions by powdered Delonix regia pods and leaves was investigated using batch adsorption techniques. The effects of operating conditions such as pH, contact time, adsorbent dosage, metal ion concentration and the presence of sodium ions interfering with the sorption process were investigated. The results obtained showed that equilibrium sorption was attained within 30 min of interaction, and an increase in the initial concentration of the adsorbate, pH and adsorbent dosage led to an increase in the amount of Ni(II) and Cu(II) ions adsorbed. The adsorption process followed the pseudo-second-order kinetic model for all metal ions' sorption. The equilibrium data fitted well with both the Langmuir and Freundlich isotherms; the monolayer adsorption capacity (Q0 mg g−1) of the Delonix regia pods and leaves was 5.88 and 5.77 mg g−1 for Ni(II) ions respectively and 9.12 and 9.01 mg g−1 for Cu(II) ions respectively. The efficiency of the powdered pods and leaves of Delonix regia with respect to the removal of Ni(II) and Cu(II) ions was greater than 80 %, except for the sorption of Ni(II) ions onto the leaves. The desorption study revealed that the percentage of metal ions recovered from the pods was higher than that recovered from the leaves at various nitric acid concentrations. This study proves that Delonix regia biomass, an agricultural waste product (“agro-waste”), could be used to remove Ni(II) and Cu(II) ions from aqueous solution.


Author(s):  
E. S. Isagba ◽  
S. Kadiri ◽  
I. R. Ilaboya

This paper investigated the use of yam peel as a natural adsorbent for the removal of Copper (Cu) and Manganese (Mn) from waste water. The yam peels were thoroughly washed with distilled water, dried, pulverized and carbonized. The carbonized yam peel was then characterized for its particle sizes, moisture content, ash content, volatile matter, Methylene Blue number, Iodine number. The raw yam peels were prepared using the same procedure, but was not carbonized. The adsorption of Mn(II) and Cu(II) ions were investigated using adsorption experiment at room temperature. The effect of contact time, metal ion concentration and dosage were evaluated. The residual concentrations of the metal ions were determined by Atomic Absorption Spectrophotometer (AAS). Experimental data obtained were analyzed using Kinetic models and Isotherms such as Pseudo- First order kinetic models, Pseudo-second order kinetic models, Langmuir isotherms and Freundlich isotherm. The analysis showed that the pseudo-second order kinetic model best described the adsorption of the metal ions; ( Cu; r2 = 0.991 for RYP and r2 = 0.834 for AYP) and (Mn; r2 = 0.958 for RYP and r2 = 0.896 for AYP) and the experimental data best fit the Freundlich model; (Cu; r2 = 0.564 for RYP and r2 = 0.871 for AYP) and (Mn; r2 = 0.685 for RYP and r2 = 0.736 for AYP). Finally, optimum removal efficiencies of 30.54% for Mn(II) and 39.62% for Cu(II) were obtained for AYP at concentrations of 50mg/l and mass dosage of 1.0g, 120 minutes contact time and a pH of 6.8.


2021 ◽  
pp. 0958305X2198988
Author(s):  
Adeyinka Sikiru Yusuff

Aluminium oxide modified onion skin waste (Al2O3/OSW) was characterized and used for adsorption of metal ions (Pb2+ and Cd2+) in this study, and the relations between sorbent properties and metal ion sorption were investigated. The effects of adsorption process conditions on metal ion removal efficiency, including initial cation concentration, contact time, adsorbent dosage and pH, were examined. The obtained adsorption data were analyzed by various adsorption isotherm and kinetic models. It was found that the optimum values of the initial concentration, contact time, adsorbent dosage and pH were 10 mg/L, 120 min, 1.6 g/L and 6.0, respectively. At these optimum conditions, maximum removal percentages of Pb2+ and Cd2+ were 91.23 and 94.10%, respectively. The isotherm and kinetic studies showed a multilayer adsorbate-adsorbent system with the dominance of the chemisorption mechanism. The study concluded that onion skin waste is a viable, cheap and effective alternative for removing heavy metal ions from water/wastewater.


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


2018 ◽  
Vol 18 (3) ◽  
pp. 472
Author(s):  
Venty Suryanti ◽  
Sri Hastuti ◽  
Tutik Dwi Wahyuningsih ◽  
Mudasir Mudasir ◽  
Dian Kresnadipayana ◽  
...  

The batch removal of Cu(II), Cd(II) and Pb(II) from individual heavy metal ion aqueous synthetic solution using biosurfactants produced by Pseudomonas aeruginosa with corn oil as substrate was investigated. The metal ion removal process of crude preparation biosurfactants (CPB) was established to be dependent on the initial pH and contact time. The optimum metal removal was observed at pH 6.0 of the initial metal solution and 10 min of contact time. The affinity sequence for metal ion removal was Pb(II)>Cd(II)>Cu(II). The removal capacity value of biosurfactant for Cu(II), Cd(II) and Pb(II) from single metal ions solution were 0.169, 0.276 and 0.323 mg/g, respectively. The removal capacity value of biosurfactant for Cu(II), Cd(II) and Pb(II) from multi metal ions solution were 0.064, 0.215 and 0.275 mg/g, respectively. The removal capacity of individual metal ion was diminished by the presence of other metal ions in multi metal ions from synthetic aqueous solution. The removal capacity value of biosurfactant for Cu(II), Cd(II) and Pb(II) from silver industry wastewater were 0.027, 0.055 and 0.291 mg/g, respectively. The results indicated that biosurfactants have potential to be used in the remediation of heavy metals in industrial wastewater.


2021 ◽  
Vol 13 (11) ◽  
pp. 6390
Author(s):  
Yasser A. El-Amier ◽  
Ashraf Elsayed ◽  
Mohamed A. El-Esawi ◽  
Ahmed Noureldeen ◽  
Hadeer Darwish ◽  
...  

In this study, a natural low-coast, efficient, and eco- bio-sorbent plant material (Ludwigia stolonifera), with both parts of the root and shoot, were studied for the removal of the cationic metal ions, lead Pb2+ and chromium Cr6+, via batch mode experiments to evaluate their maximum adsorption capacity, and held a comparison between the used bio-sorbent roots and shoots, based on the highest bio-sorption potential. Optimization of the bio-sorption parameters, such as contact time, pH, bio-sorbent (root and shoot) dosage, and initial ion concentration was conducted. The results indicated that 1.6 g of the used bio-sorbent shoot material removed 81.4% of Pb2+, and 77% of Cr6+ metal ions from liquid media under the conditions of 100 ppm of initial metal ions concentration at room temperature for 60 min of contact time with the static condition. Different isotherms and kinetic models were fit to the experimental data to understand the nature of the bio-sorption process. The experimental data were best fit by the pseudo-second-order kinetic model with a high correlation coefficient (R2 = 0.999), which reveals the chemisorption nature of the bio-sorption process. The chemical and structural analysis of the used bio-sorbent, before and after Cr6+ and Pb2+ bio-sorption, were performed using different techniques of characterization, such as Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The used bio-sorbent proved to be a low-cost, efficient, and eco-friendly material to remove heavy metal ions from aqueous solutions.


2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nazia Rahman ◽  
Nobuhiro Sato ◽  
Satoru Yoshioka ◽  
Masaaki Sugiyama ◽  
Hirotaka Okabe ◽  
...  

Acrylic acid (AAc) grafted polyethylene terephthalate (PET) films were prepared by γ irradiation. The graft films showed little metal ion adsorption due to compact structure of the graft chains as shown by the scanning electron microscopy (SEM) images which restricted the access of metal ions to the functional groups. Therefore, the graft films were modified with KOH treatment for expansion of the graft chains to facilitate the access of metal ions to the functional groups. The modified films were used to study the selective Cu2+ adsorption from aqueous solution containing Cu2+, Co2+, and Ni2+. Langmuir and Freundlich isotherm models were used for interpretation of selective equilibrium adsorption data and Langmuir model showed better fitting with experimental data. Again pseudo-first-order and pseudo-second-order equations were used for interpretation of selective kinetic adsorption data and pseudo-second-order equation showed better prediction of experimental data. The adsorbent film showed high selectivity towards Cu2+ in presence of Cu2+, Co2+, and Ni2+ in the pH range of 1.5 to 4.5. Desorption and reuse of the adsorbent film were also studied which indicated that the film can be used repeatedly for selective Cu2+ sorption from aqueous solution.


2017 ◽  
Vol 19 (3) ◽  
pp. 106-114 ◽  
Author(s):  
Sahand Jorfi ◽  
Mohammad Javad Ahmadi ◽  
Sudabeh Pourfadakari ◽  
Nematollah Jaafarzadeh ◽  
Reza Darvishi Cheshmeh Soltani ◽  
...  

Abstract The main aim of this study was to evaluate the efficiency of natural zeolite for Cr(VI) removal from aqueous solutions. Following simple modification of adsorbent, the effect of operational parameters including pH (2–10), adsorbent dosage (2–20 g/L), contact time (5–150 min) and Cr(VI) concentration (10–50 mg/L) were studied according to one-factor-at-a-time procedure. The maximum Cr(VI) removal of 99.53% was obtained at initial pH of 2, contact time of 30 min, adsorbent dosage of 8 g/L and initial chromium concentration of 10 mg/L. The Freundlich isotherm was best fitted with experimental data (R2 = 0.951). Also, type 1pseudo second order kinetic model showed the most correlation (R2 = 1) with the experimental data. According to obtained results, it can be concluded that the application of clay-like adsorbents such as natural clinoptilolite zeolite can be considered as an efficient alternative for final treatment of effluents containing Cr(VI).


Sign in / Sign up

Export Citation Format

Share Document