scholarly journals Optimisation of Zinc Oxide Nanoparticle Biosynthesis Using Saccharomyces Cerevisiae with Box-Behnken Design

2021 ◽  
Vol 72 (1) ◽  
pp. 79-89
Author(s):  
Fitry Mulyani ◽  
M. Diki Permana ◽  
Safri Ishmayana ◽  
Iman Rahayu ◽  
Diana Rakhmawaty Eddy

Zinc oxide nanoparticles have wide applications as catalysts, antimicrobial agents, drug delivery agents, etc. because of their intrinsic properties. Various methods can be applied to synthesise nanoparticles, one of which is the biosynthesis process. Biosynthesis is more eco-friendly than chemical and physical methods. In the present study, the optimisation of zinc oxide nanoparticle biosynthesis using the yeast Saccharomyces cerevisiae was performed by applying a response surface method called the Box�Behnken design (BBD). Three factors were optimised in the present study, namely the concentration of zinc acetate as the precursor (X1), concentration of the S. cerevisiae fermentation broth (X2), and the incubation time (X3). The mass of zinc oxide nanoparticles (Y) was recorded as the response of the experiment. The product was then characterised by fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), and particle size analyser (PSA). The optimum conditions for the preparation of zinc oxide nanoparticles were found to be 0.3 M, 100% (v/v), and 24 h as the zinc acetate concentration, medium concentration, and incubation time, respectively. The FTIR analysis showed peaks at ~600 cm−1, which is characteristic for ZnO stretching. From the XRD result, the ZnO nanoparticles with hexagonal structure was confirm. The SEM/EDS analysis confirmed that the morphology was spherical and showed the major energy emission for zinc and oxygen. Moreover, the PSA analysis revealed that the smallest size was 218.6 nm (12%) when the synthesis was performed at the optimum conditions, while when the incubation time was prolonged for 120 h, the size decreased to 134.2 nm.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
E. Y. Shaba ◽  
J. O. Jacob ◽  
J. O. Tijani ◽  
M. A. T. Suleiman

AbstractIn this era, nanotechnology is gaining enormous popularity due to its ability to reduce metals, metalloids and metal oxides into their nanosize, which essentially alter their physical, chemical, and optical properties. Zinc oxide nanoparticle is one of the most important semiconductor metal oxides with diverse applications in the field of material science. However, several factors, such as pH of the reaction mixture, calcination temperature, reaction time, stirring speed, nature of capping agents, and concentration of metal precursors, greatly affect the properties of the zinc oxide nanoparticles and their applications. This review focuses on the influence of the synthesis parameters on the morphology, mineralogical phase, textural properties, microstructures, and size of the zinc oxide nanoparticles. In addition, the review also examined the application of zinc oxides as nanoadsorbent for the removal of heavy metals from wastewater.


2016 ◽  
Vol 70 (11) ◽  
Author(s):  
Kateřina Hrdá ◽  
Jakub Opršal ◽  
Petr Knotek ◽  
Miloslav Pouzar ◽  
Milan Vlček

AbstractToxicity of zinc oxide nanoparticle (ZnO-NPs) powder and water soluble salt of Zn (ZnCl


2016 ◽  
Vol 2 (1) ◽  
pp. 11-15 ◽  
Author(s):  
S. Begila David

Nanoparticles have made a steady progress in all the branches of science. It is used in biological applications including nanomedicine. Zinc oxide is also known as Zincite generally seen in a crystalline form. Zinc oxide nanoparticles are multifunctional. It has effective antibacterial activity. This study focuses on the synthesis of zinc oxide nanoparticle by the sonochemical and green method, characterized by XRD, SEM and to determine the antibacterial efficacy of green and chemical techniques.Results prove that green synthesized Zinc oxide nanoparticle shows the enhanced biocidal activity. In addition the current study has demonstrated that the particle size variation and surface area to volume ratio of green synthesized Zinc oxide nanoparticles are responsible for significant high antibacterial activity. From the result obtained it suggested that the biogenic green fabrication is a better choice due to eco-friendliness.


2020 ◽  
Vol 12 (1) ◽  
pp. 137-143
Author(s):  
Lingling Meng ◽  
Lina Du ◽  
Yaqiong Shen ◽  
Shan Cong ◽  
Qiuyan Zhai ◽  
...  

Zinc oxide (ZnO) nanoparticles recently are of significant consideration because of their applications as nontoxic metal oxides. This study is mainly intended to improve a simple, efficient, and environment-friendly method for preparation of ZnO nanoparticles. This process has been developed based on plant-intervened synthesis by making use of microwave Saturejahortensis aqueous extract. We have further characterized the obtained Zinc oxide nanoparticles by using different techniques. Additionally, their cytotoxic potential was inspected via MTT assay against both B lymphoma, A20 and T lymphoma, EL4 cells lines. The zinc oxide nanoparticle exposed cells for about 24 h showed diminished cell viability in the tested cell lines where EL4 cells has been reduced to 75% of control after 24 h, whereas A20 cells were lowered to 68% of control. ZnO-NPs have proficiently hindered EL4 cell DNA synthesis at 100 μg concentration whereas completely blocked the DNA proliferation at about 50 g concentration. However, A20 cells besides presented similar propensity, thus exploring the ZnO-NPs potential to treat lymphomas.


Author(s):  
Shymala Rajan Abhinaya ◽  
Ramakrishnan Padmini

Objective: The objective of the study is to perform the synthesis of zinc oxide nanoparticles using the bark extract of Pterocarpus marsupium and to evaluate its biomedical applications.Methods: Various concentrations of zinc acetate are used, and synthesis conditions were optimized to get a stable nanoparticle. The finest synthesis condition for zinc oxide nanoparticle production was at pH 7 with 20 ml extract, zinc acetate 10 mM, and 120 min of reaction time. The synthesized nanopowder was characterized using various analytical techniques, such as ultraviolet (UV)-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized nanoparticles were tested for their antimicrobial, anti-inflammatory, inhibition of lipid peroxidation, and inhibition of amylase activity.Results: The size range of nanoparticles obtained was in the range of 10–32 nm as reported by SEM. The UV-visible absorption spectrum of the synthesized nanoparticle showed a peak at 340 nm, which confirmed the presence of nanoparticles. FTIR spectroscopy analysis indicated the presence of zinc oxide stretching at 666.22 cm-1. Further, the IR spectra indicated the presence of alcohols and acids, which can act as capping agents around the nanoparticles. XRD analysis confirmed the crystalline nature of nanoparticles.The synthesized nanoparticle showed appreciable antimicrobial activity. Zinc oxide nanoparticles at 40 μg/well were tested against phytopathogens, Pseudomonas aeruginosa, Staphylococcus aureus, Aspergillus flavus, and Aspergillus niger showed 16, 13, 15, and 16 mm zones of inhibition, respectively. The synthesized nanoparticle showed a considerable increase in inhibition of lipid peroxidation and amylase activity. The nanoparticle also exhibited appreciable anti-inflammatory activity measured by the inhibition of albumin denaturation.Conclusion: The study instigates the simple and convenient method of synthesizing zinc oxide nanoparticles using P. marsupium and its few biomedical applications.


2007 ◽  
Vol 42 (1-6) ◽  
pp. 361-368 ◽  
Author(s):  
Sul Lee ◽  
Sunho Jeong ◽  
Dongjo Kim ◽  
Bong Kyun Park ◽  
Jooho Moon

Author(s):  
Han Tao ◽  
Songshen Hu ◽  
Chuchu Xia ◽  
Mengyu Wang ◽  
Tonglin Wang ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) are widely used in the manufacture of textile fibers, synthetic rubber, and paint. However, crop yields and quality are threatened by the increased use of...


2020 ◽  
Vol 11 (3) ◽  
pp. 3889-3896
Author(s):  
Shivkanya Fuloria ◽  
Chiam Sin Ru ◽  
Neeraj Paliwal ◽  
Sundram Karupiah ◽  
Kathiresan Sathasivam ◽  
...  

Biogenic zinc oxide nanoparticles (BZnONPs) as a nano medicine attain high importance in the treatment of Peri Implantitis (PI). Present study was aimed to biosynthesize, optimize, characterize and evaluate the response of BZnONPs against PI triggering non periodontal pathogen. The BZnONPs synthesis, characterization, optimization and stability were based on UV-Visible, FTIR, XRD, FESEM, and EDX data. The BZnONPs were tested against S. aureus. Treatment of zinc acetate with Dimocarpus longan leaves extract resulted in formation of BZnONPs, which exhibited the absorbance signal between 350- 359 nm. Optimization study established 0.05 M zinc acetate, 6 ml of DLL aqueous extract, pH 12, and 2 h stirring time as parametric requirements for BZnONPs synthesis. Stability study of BZnONPs exhibited absorbance at 340 nm. The BZnONPs were characterized based on broad and shifted FT-IR bands, XRD signals (at 2θ values of 31.70◦ , 34.33◦ , 36.19◦ , 47.45◦ , 56.52◦ , 62.78◦ , 67.88◦ and 72.45◦ ), size range from 42.07-61.33 nm in FESEM, and elemental zinc 74.22 % in EDX spectrum. The BZnONPs exhibited high inhibitory response towards S. aureus. Present study establish that BZnONPs synthesis using Dimocarpus longan leaves aqueous extract is a facile method and reports that BZnONPs could be potential remedy for PI.


Sign in / Sign up

Export Citation Format

Share Document