scholarly journals THE RESIDUAL LATERAL EARTH PRESSURE ON RETAINING WALL DUE TO VIBRATORY ROLLERS

2019 ◽  
Vol 14 (50) ◽  
pp. 37-46 ◽  
Author(s):  
Moamen Abd El Raouf
2013 ◽  
Vol 477-478 ◽  
pp. 596-599
Author(s):  
Jian Qing Wu ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Yi Fan Yu ◽  
Chao Li

With the highway subgrade fill increasing, traditional retaining wall cannot meet the requirements for supporting. To meet this requirement, the prestressed opposite-pull retaining wall was put forward. Due to the anchor pull of the new-style retaining wall, its bearing capacity was enhanced, but the stress is not clear. In order to reveal the stress distribution of the prestressed opposite-pull retaining wall, FLAC3D was adept to do numerical simulation on the new-style retaining wall. It simulated three conditions of the wall with no anchor, with anchor but without prestress and with prestressed anchor. The results showed that, after the layout of prestressed anchor, the lateral earth pressure of the region near the anchor increased with the increase of prestress, the lateral earth pressure of the wall is parabola distribution. The lateral earth pressure was larger than that of the wall with no anchor and with anchor but without prestress. The bearing capacity of the retaining wall was effectively improved.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Septiana Widi Astuti ◽  
Ayu Prativi

Abutment bridge is a building under the bridge located on both sides of the bridge end. The process of building a bridge abutment often requires excavation to the depth of the abutment base so that the abutment reinforcement and casting work can be carried out. In deep excavation work, each side of the excavation needs to be installed in a flexible retaining wall type (plaster) first. In this study, CCSP stability analysis was carried out on earth excavation work for abutment bridge BH 1751. The calculation method starts from determining the lateral earth pressure acting on the soil, then determining the depth of CCSP planting that is able to produce CCSP stability on the rolling force. The analysis shows that the depth of CCSP planting that meets the safety requirements of the rolling force is 20 m


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sahar Ghobadi ◽  
Hadi Shahir

Purpose The purpose of this paper is to study the distribution of active earth pressure in retaining walls with narrow cohesion less backfill considering arching effects. Design/methodology/approach To this end, the approach of principal stresses rotation was used to consider the arching effects. Findings According to the presented formulation, the active soil pressure distribution is nonlinear with zero value at the wall base. The proposed formulation implies that by increasing the frictional forces at both sides of the backfill, the arching effect is increased and so, the lateral earth pressure on the retaining wall is decreased. Also, by narrowing the backfill space, the lateral earth pressure is extremely decreased. Originality/value A comprehensive analytical solution for the active earth pressure of narrow backfills is presented, such that the effects of the surcharge and the characteristics of the stable back surface are considered. The magnitude and height of the application of lateral active force are also derived.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Magdi El-Emam

The paper presents a one-meter-height rigid facing panel, supported rigidly at the top and bottom to simulate nonyielding retaining wall system. A set of load cells is used to measure the horizontal force at the top and bottom of the facing panel, which is converted to equivalent horizontal earth pressure acting at the back of the wall. Another set of load cells is used to measure the vertical load at the bottom of the wall facing, both at the toe and the heel. Uniformly graded sand was used as backfill soil. The measured wall responses were used to calibrate a numerical model that used to predict additional wall parameters. Results indicated that the measured horizontal earth force is about three times the value calculated by classical at-rest earth pressure theory. In addition, the location of the resultant earth force is located closer to 0.4 H, which is higher compared to the theoretical value of H/3. The numerical model developed was able to predict the earth pressure distribution over the wall height. Test set up, instrumentation, soil properties, different measured responses, and numerical model procedures and results are presented together with the implication of the current results to the practical work.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dong Li ◽  
Wei Wang ◽  
Qichang Zhang

In field, the earth pressure on a retaining wall is the common effect of kinds of factors. To figure out how key factors act, it has taken into account the arching effects together with the contribution from the mode of displacement of a wall to calculate earth pressure in the proposed method. Based on Mohr circle, a conversion factor is introduced to determine the shear stresses between artificial slices in soil mass. In the light of this basis, a modified differential slices solution is presented for calculation of active earth pressure on a retaining wall. Comparisons show that the result of proposed method is identical to observations from model tests in prediction of lateral pressures for walls rotating about the base.


2013 ◽  
Vol 353-356 ◽  
pp. 312-317
Author(s):  
Ying Yong Li ◽  
Li Zhi Zheng ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Zhi Chao Xue

In order to ensure the security of gravity retaining wall in the high fill subgrade, the design of gravity retaining wall with anchors is proposed,the characteristic of the new wall is that comment anchors are added to the traditional gravity retaining wall,by friction anchors provide lateral pull to the wall so the stability of the new wall is improved. Because of the constraints of anchors, the lateral free deformation is influenced and the soil pressure distribution is very complicated, field tests showed that soil pressure distribution is nonlinear and pressure concentrate in anchoring position. In order to reveal the supporting mechanism of retaining wall and propose the soil pressure formula, the model test of anchor retaining wall is made and numerical simulation is done. The results show that soil pressure appears incresent above the anchor and decreasing below the anchor, the soil pressre also grew larger away from the anchor proximal in the horizontal direction.


2020 ◽  
Vol 17 (4) ◽  
pp. 481-489
Author(s):  
Seyyed Pouya Alavinezhad ◽  
Hadi Shahir

Purpose The purpose of this study is to present a diagram for the lateral earth pressure of c–φ soils exerted on anchored walls in presence of surcharge. Design/methodology/approach To this end, two-dimensional plane strain modeling of anchored wall was carried out in Plaxis software. To validate the numerical model, two excavations with different specifications were simulated and the model results were compared with the available results. Subsequently, a parametric analysis was done and based on its results, a diagram was proposed for the lateral earth pressure of c–φ soils including the surcharge effects. Findings The proposed diagram without the surcharge and cohesion effects is a trapezoidal with zero value at the ground surface that is linearly approaching the apparent earth pressure of sand according to Terzaghi and Peck (1967) at 0.1H (H: wall height). The surcharge and cohesion effects at the ground level is 4 Ka*q and 0, respectively, and below 0.1H, they are treated as the same way for lateral earth pressure of a retaining wall. It should be emphasized that the apparent pressure diagram for design does not resemble the real distribution of earth pressure against the wall and it is for calculating the values of the anchors loads. Originality/value The available diagrams to determine the earth pressure exerted on the anchored walls are related to sandy or clayey soils and do not take the presence of surcharge into account. Thus, the proposed diagram is quite original and different from the previous ones.


2021 ◽  
Vol 11 (6) ◽  
pp. 2744
Author(s):  
Álvaro R. Serrano-Chacón ◽  
Emilio J. Mascort-Albea ◽  
Jacinto Canivell ◽  
Rocío Romero-Hernández ◽  
Antonio Jaramillo-Morilla

Institutions such as ICOFORT (International committee on fortifications and military heritage) encourages the development of diagnosis strategies for the conservation and maintenance of historic earthen walls as highly necessary. Thus, it is important to be aware of the conditions in urban contexts, where the deterioration can be more aggressive and the risk of damage increases. Despite this, there are many strategies of constructive diagnosis for these kinds of monuments, but not many of them are concerned with the structural assessment of situations in which the ramparts work as a retaining wall in an unforeseen way. The medieval ramparts of Seville (Spain) are shown as a completely representative case study of the above-mentioned situation. In the research sector, the monument resists the lateral earth pressure developed by the new difference in height at both sides of the wall. Based on the limited states principle and on different international codes formulation, a tool was programmed to carry out automatic calculations to verify the case study’s overall stability conditions using standard sections. The obtained results were based on the overturning, bearing, and sliding overdesign factors (ODF) and determined a stable situation that could be at risk because of changes in the surrounding such as, excavations or the movements of the ground water table, or seismic events. Thus, the need and usefulness of strategies and control instruments that should be integrated into heritage intervention projects have been proved.


Sign in / Sign up

Export Citation Format

Share Document