scholarly journals Optimizing the Artificial Lighting in a Smart and Green Glass Building-integrated Semi-Transparent Photovoltaics: A Multifaceted Case Study in Egypt

2021 ◽  
Vol 17 ◽  
pp. 118-127
Author(s):  
Mohamed O. Ahmed ◽  
Ahmed K. Madkor ◽  
Peter Makeen ◽  
Shehab Edin I. Betelmal ◽  
Minatallah M. Hassan ◽  
...  

Numerous increases in CO2 emissions are recognizable nowadays. Consequently, building integrated photovoltaics (BIPV) glows up as a trendy future solution. BIPVs are introduced by substituting one of the building components with a green energy harvesting source seeking for sustainability. Herein, we propose a BIPV techno-economic feasibility by utilizing in-Lab fabricated semi-transparent solar cells as a glass interface. Three alternatives have been taken into consideration with proposing on-roof Photovoltaic (PV) system (alternative #1) and semi-transparent solar cells working as glass interfaces (alternative #2) while keeping the governmental grid as a reference alternative (alternative #3). Daylight simulations and electric lighting loads optimization are investigated showing an overall energy budget per alternative. An optimum alternative with an overall excess energy of around 88 MWh as annual energy production was reached, while satisfying 100% of the targeted electrical loads. Levelized cost of energy (LCOE) is demonstrated as an economic parameter to evaluate the three proposed alternatives.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3360
Author(s):  
Tefera Mekonnen ◽  
Ramchandra Bhandari ◽  
Venkata Ramayya

Currently, difficulties such as the depletion of fossil fuel resources and the associated environmental pollution have driven the rise of other energy systems based on green energy sources. In this research, modeling and a viability study of grid-connected and islanded photovoltaic (PV) power systems for supplying the residential load in Mekelle City, Ethiopia, were carried out considering the country’s emerging utility tariff plan for 2021 and beyond. The technical viability of the proposed supply option was analyzed using PVGIS, PVWatts and HOMER Pro tool, while the economic and environmental optimization aspects were carried out using HOMER Pro. Sensitivity analyses and output comparisons among the three renewable energy simulation tools are presented. The results showed that under the consideration of an incremental electricity tariff plan (up to 2021), the analyzed cost of energy of the grid/PV system is around 12% lower than the utility grid tariff. Moreover, we also found that by taking the continuous global solar PV cost reduction into account, the cost of energy of the modeled islanded operation of solar PV power units totally broke the grid tariff in Ethiopia after 2029 based on the tariff for 2021 and well before with the expected escalation of the grid tariff on an annual basis. The technical performance of the system realized through PVGIS and PVWatts was almost comparable to the HOMER Pro outputs. Thus, this investigation will offer a clear direction to the concerned target groups and policy developers in the evolution of PV power supply options throughout the technically viable locations in the country.


2019 ◽  
Vol 12 (1) ◽  
pp. 262 ◽  
Author(s):  
Amir A. Imam ◽  
Yusuf A. Al-Turki ◽  
Sreerama Kumar R.

This paper presents a techno-economic feasibility evaluation for a grid-connected photovoltaic energy conversion system on the rooftop of a typical residential building in Jeddah, one of the major cities in Saudi Arabia. In Saudi Arabia, electric energy consumption is the highest in the domestic sector, with 48.1% of the total electricity consumption. As the power generation in Saudi Arabia mainly relies on conventional resources, environmental pollution and energy sustainability are major concerns. To minimize these issues, the Saudi government is in the process of maximizing the utilization of renewable energy resources for power generation. Investing in solar energy in Saudi Arabia is important because the country is witnessing a rapid increase in load demand, with annual growth rates of 6%. In this paper, the system advisor model software for renewable energy modeling has been utilized to perform a techno-economic feasibility analysis of a residential grid-connected solar photovoltaic (PV) system, which is proposed for a typical apartment in Saudi Arabia, on the basis of various key performance indicators, namely: yield factor, capacity factor, performance ratio, levelized cost of energy, net present value, internal rate of return, and payback period. A sensitivity analysis that investigates the impact of varying techno-economic parameters on system performance and feasibility is also discussed. The size of the PV system for a typical Saudi Arabian apartment is estimated to be 12.25 kW. Results have shown that the proposed system can generate 87% of the electricity needs of an apartment. The technical analysis showed that the capacity factor and the performance ratio were 22% and 78% respectively. The levelized cost of energy and net present value revealed competitive figures of 0.0382 $/kWh and $4378, respectively. The investigations indicate that residential PV installations are an effective option for energy management in the country.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3412
Author(s):  
Reza Khalifeeh ◽  
Hameed Alrashidi ◽  
Nazmi Sellami ◽  
Tapas Mallick ◽  
Walid Issa

Semi-transparent Building Integrated Photovoltaics provide a fresh approach to the renewable energy sector, combining the potential of energy generation with aesthetically pleasing, multi-functional building components. Employing a range of technologies, they can be integrated into the envelope of the building in different ways, for instance, as a key element of the roofing or façade in urban areas. Energy performance, measured by their ability to produce electrical power, at the same time as delivering thermal and optical efficiencies, is not only impacted by the system properties, but also by a variety of climatic and environmental factors. The analytical framework laid out in this paper can be employed to critically analyse the most efficient solution for a specific location; however, it is not always possible to mitigate energy losses, using commercially available materials. For this reason, a brief overview of new concept devices is provided, outlining the way in which they mitigate energy losses and providing innovative solutions for a sustainable energy future.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


2021 ◽  
Vol 13 (1) ◽  
pp. 396
Author(s):  
Norasikin Ahmad Ludin ◽  
Nurfarhana Alyssa Ahmad Affandi ◽  
Kathleen Purvis-Roberts ◽  
Azah Ahmad ◽  
Mohd Adib Ibrahim ◽  
...  

Sustainability has been greatly impacted by the reality of budgets and available resources as a targeted range of carbon emission reduction greatly increases due to climate change. This study analyses the technical and economic feasibility for three types of solar photovoltaic (PV) renewable energy (RE) systems; (i) solar stand-alone, a non-grid-connected building rooftop-mounted structure, (ii) solar rooftop, a grid-connected building rooftop-mounted structure, (iii) solar farm, a grid-connected land-mounted structure in three tropical climate regions. Technical scientific and economic tools, including life cycle assessment (LCA) and life cycle cost assessment (LCCA) with an integrated framework from a Malaysian case study were applied to similar climatic regions, Thailand, and Indonesia. The short-term, future scaled-up scenario was defined using a proxy technology and estimated data. Environmental locations for this scenario were identified, the environmental impacts were compared, and the techno-economic output were analysed. The scope of this study is cradle-to-grave. Levelised cost of energy (LCOE) was greatly affected due to PV performance degradation rate, especially the critical shading issues for large-scale installations. Despite the land use impact, increased CO2 emissions accumulate over time with regard to energy mix of the country, which requires the need for long-term procurement of both carbon and investment return. With regards to profitably, grid-connected roof-mounted systems achieve the lowest LCOE as compared to other types of installation, ranging from 0.0491 USD/kWh to 0.0605 USD/kWh under a 6% discounted rate. A simple payback (SPB) time between 7–10 years on average depends on annual power generated by the system with estimated energy payback of 0.40–0.55 years for common polycrystalline photovoltaic technology. Thus, maintaining the whole system by ensuring a low degradation rate of 0.2% over a long period of time is essential to generate benefits for both investors and the environment. Emerging technologies are progressing at an exponential rate in order to fill the gap of establishing renewable energy as an attractive business plan. Life cycle assessment is considered an excellent tool to assess the environmental impact of renewable energy.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2016 ◽  
Vol 5 (1-2) ◽  
pp. 162-170
Author(s):  
Henrik Zsiborács ◽  
Béla Pályi ◽  
Gábor Pintér ◽  
Nóra Hegedűsné Baranyai ◽  
Péter Szabó ◽  
...  

In this paper the economic aspects of the water spraying cooling technology of polycrystalline solar modules with respect to the effect of temperature on performance was examined. The main purpose of this work was to explore the economic relations of the spraying cooling technology of solar modules. In the study 5 kW PV system for residential customers, 5 kW and 50 kW PV system for business customer were studied. In Hungarian climatic conditions, considering the inflation values used, the interest rate, the annual utilization of the cooling system, the expected profit and the maintenance costs show us that neither of the cooling solutions is capable of better payback time than the reference uncooled solar PV system. The further research goal is to determine the usability of the cooling system in such countries which have on the one hand more ideal climatic conditions, on the other hand more predictable green energy feed regulations.


2018 ◽  
Vol 8 (4) ◽  
pp. 3168-3171
Author(s):  
F. Mavromatakis ◽  
G. Viskadouros ◽  
H. Haritaki ◽  
G. Xanthos

The latest measure for the development of photovoltaics in Greece utilizes the net-metering scheme. Under this scheme the energy produced by a PV system may be either consumed by the local loads or be injected to the grid. The final cost reported in an electricity bill depends upon the energy produced by the PV system, the energy absorbed from the grid and the energy injected to the grid. Consequently, the actual electricity consumption profile is important to estimate the benefit from the use of this renewable energy source. The state latest statistics in Greece for households reveal that the typical electrical consumption is 3750 kWh while 10244 kWh are consumed in the form of thermal energy. We adopt in our calculations the above amount of electrical energy but assume four different scenarios. These different hourly profiles are examined to study the effects of synchronization upon the final cost of energy. The above scenarios are applied to areas in different climate zones in Greece (Heraklion, Athens and Thessaloniki) to examine the dependence of the hourly profiles and the solar potential upon the financial data with respect to internal rate of return, payback times, net present value and the levelized cost of energy. These parameters are affected by the initial system cost and the financial parameters.


2018 ◽  
Vol 8 (5) ◽  
pp. 3421-3426 ◽  
Author(s):  
F. Chermat ◽  
M. Khemliche ◽  
A. E. Badoud ◽  
S. Latreche

This work aims to consider the combination of different technologies regarding energy production and management with four possible configurations. We present an energy management algorithm to detect the best design and the best configuration from the combination of different sources. This combination allows us to produce the necessary electrical energy for supplying habitation without interruption. A comparative study is conducted among the different combinations on the basis of the cost of energy, diesel consumption, diesel price, capital cost, replacement cost, operation, and maintenance cost and greenhouse gas emission. Sensitivity analysis is also performed.


Sign in / Sign up

Export Citation Format

Share Document