scholarly journals Cellular Automaton for Kidney Branching Morphogenesis

2021 ◽  
Vol 18 ◽  
pp. 170-182
Author(s):  
Afshin Poorkhanalikoudehi ◽  
Karl-Heinz Zimmermann

Epithelium is a complex component in the mammalian kidney that has a highly branched duct system. Branching morphogenesis has a hierarchy structure in the ureteric bud and produces the collecting duct tree through repetitive processes. Epithelial and mesenchymal cells surround the tips of growing branches, and their cellular reactions adjust the ureteric bud branching. Mesenchymal cells produce a small protein called glial cellline derived neurotrophic factor (GDNF) that connects to te Rearranged in Transfection (RET) receptors on the surface of epithelial cells. The identified reactions are a necessity for the normal branching growth and their roles exist for using biological features in the proposed model. This paper presents an agent-based model based on cellular automaton for kidney branching in ex-vivo using the features that are expressed as artificial patterns in algorithms. This model extending the groundbreaking approach of Lambert et al. is flexible in features and high compatibility with experimental data. Mesenchymal cells and RET receptors are also expressed as mathematical patterns in the algorithms. The growth mechanism is determined by the growth factor, which indicates the epithelial cell branch when its cell division depends on the local concentration growth factor. Cell division occurs when the level of stimulus growth factor exceeds the threshold. Comparison shows that the model mimics experimental data with high consistency and reveals the dependence between growth factor parameters and features. Results indicate the superiority of compatibility with nature when compared with the model mentioned above.

2017 ◽  
Author(s):  
Ben Lambert ◽  
Adam L. MacLean ◽  
Alexander G. Fletcher ◽  
Alexander N. Combes ◽  
Melissa H. Little ◽  
...  

AbstractThe adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, “Approximate Approximate Bayesian Computation”, can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF.Author SummaryA number of important congenital disorders arise due to incomplete development of the mammalian kidney. Elucidating the cause of these conditions requires an understanding of the mechanisms that contribute to kidney morphogenesis. Whilst experimental work has suggested several candidate mechanisms, their importance is still not well understood. Here we develop a computational model of kidney morphogenesis at the individual cell level to compare these different hypotheses. Guided by existing experimental evidence we propose that a generic growth factor, that we term “GDNF”, produced from the mesenchyme surrounding the epithelium, can drive a number of cellular responses. Simulations of our agent-based model reveal that diffusion of GDNF, coupled with GDNF-stimulated epithelial cell division, can generate the branching patterns seen in ex vivo kidney explant experiments. We also find that branching depends on the sensitivity of cell proliferation to changes in GDNF levels. In particular our model only generates realistic branching when there is significant variation in GDNF levels along the boundary of the epithelium, and most cells divide only if the local concentration of GDNF exceeds a threshold value. We conclude that feedback between mesenchymal cells that produce GDNF, and epithelial cells that consume it, is vital for normal kidney organogenesis.


1995 ◽  
Vol 128 (1) ◽  
pp. 171-184 ◽  
Author(s):  
A S Woolf ◽  
M Kolatsi-Joannou ◽  
P Hardman ◽  
E Andermarcher ◽  
C Moorby ◽  
...  

Several lines of evidence suggest that hepatocyte growth factor/scatter factor (HGF/SF), a soluble protein secreted by embryo fibroblasts and several fibroblast lines, may elicit morphogenesis in adjacent epithelial cells. We investigated the role of HGF/SF and its membrane receptor, the product of the c-met protooncogene, in the early development of the metanephric kidney. At the inception of the mouse metanephros at embryonic day 11, HGF/SF was expressed in the mesenchyme, while met was expressed in both the ureteric bud and the mesenchyme, as assessed by reverse transcription PCR, in situ hybridization, and immunohistochemistry. To further investigate the expression of met in renal mesenchyme, we isolated 13 conditionally immortal clonal cell lines from transgenic mice expressing a temperature-sensitive mutant of the SV-40 large T antigen. Five had the HGF/SF+/met+ phenotype and eight had the HGF/SF-/met+ phenotype. None had the HGF/SF+/met- nor the HGF/SF-/met- phenotypes. Thus the renal mesenchyme contains cells that express HGF/SF and met or met alone. When metanephric rudiments were grown in serum-free organ culture, anti-HGF/SF antibodies (a) inhibited the differentiation of metanephric mesenchymal cells into the epithelial precursors of the nephron; (b) increased cell death within the renal mesenchyme; and (c) perturbed branching morphogenesis of the ureteric bud. These data provide the first demonstration for coexpression of the HGF/SF and met genes in mesenchymal cells during embryonic development and also imply an autocrine and/or paracrine role for HGF/SF and met in the survival of the renal mesenchyme and in the mesenchymal-epithelial transition that occurs during nephrogenesis. They also confirm the postulated paracrine role of HGF/SF in the branching of the ureteric bud.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3627-3637 ◽  
Author(s):  
A. Kispert ◽  
S. Vainio ◽  
L. Shen ◽  
D.H. Rowitch ◽  
A.P. McMahon

Development of the metanephric kidney requires the concerted interaction of two tissues, the epithelium of the ureteric duct and the metanephric mesenchyme. Signals from the ureter induce the metanephric mesenchyme to condense and proliferate around the ureter tip, reciprocal signals from the mesenchyme induce the ureter tip to grow and to branch. Wnt genes encode secreted glycoproteins, which are candidate mediators of these signaling events. We have identified three Wnt genes with specific, non-overlapping expression patterns in the metanephric kidney, Wnt-4, Wnt-7b and Wnt-11. Wnt-4 is expressed in the condensing mesenchyme and the comma- and S-shaped bodies. Wnt-7b is expressed in the collecting duct epithelium from 13.5 days post coitum onward. Wnt-1l is first expressed in the nephric duct adjacent to the metanephric blastema prior to the outgrowth of the ureteric bud. Wnt-l1 expression in Danforth's short-tail mice suggests that signaling from the mesenchyme may regulate Wnt-ll activation. During metanephric development, Wnt-11 expression is confined to the tips of the branching ureter. Maintenance of this expression is independent of Wnt-4 signaling and mature mesenchymal elements in the kidney. Moreover, Wnt-ll expression is maintained in recombinants between ureter and lung mesenchyme suggesting that branching morphogenesis and maintenance of Wnt-ll expression are independent of metanephric mesenchyme-specific factors. Interference with proteoglycan synthesis leads to loss of Wnt-ll expression in the ureter tip. We suggest that Wnt-11 acts as an autocrine factor within the ureter epithelium and that its expression is regulated at least in part by proteoglycans.


2004 ◽  
Vol 287 (4) ◽  
pp. F602-F611 ◽  
Author(s):  
Dong Chen ◽  
Richard Roberts ◽  
Martin Pohl ◽  
Sanjay Nigam ◽  
Jordan Kreidberg ◽  
...  

Inner medullary collecting ducts (IMCD) are terminally differentiated structures derived from the ureteric bud (UB). UB development is mediated by changes in the temporal and spatial expression of integrins and their respective ligands. We demonstrate both in vivo and in vitro that the UB expresses predominantly laminin receptors (α3β1-, α6β1-, and α6β4-integrins), whereas the IMCD expresses both collagen (α1β1- and α2β1-integrins) and laminin receptors. Cells derived from the IMCD, but not the UB, undergo tubulogenesis in collagen-I (CI) gels in an α1β1- and α2β1-dependent manner. UB cells transfected with the α2-integrin subunit undergo tubulogenesis in CI, suggesting that collagen receptors are required for branching morphogenesis in CI. In contrast, both UB and IMCD cells undergo tubulogenesis in CI/Matrigel gels. UB cells primarily utilize α3β1- and α6-integrins, whereas IMCD cells mainly employ α1β1 for this process. These results demonstrate a switch in integrin expression from primarily laminin receptors in the early UB to both collagen and laminin receptors in the mature IMCD, which has functional consequences for branching morphogenesis in three-dimensional cell culture models. This suggests that temporal and spatial changes in integrin expression could help organize the pattern of branching morphogenesis of the developing collecting system in vivo.


2012 ◽  
Vol 421 (3) ◽  
pp. 494-500 ◽  
Author(s):  
Jiayao Ji ◽  
Qinggang Li ◽  
Yuansheng Xie ◽  
Xueguang Zhang ◽  
Shaoyuan Cui ◽  
...  

2010 ◽  
Vol 298 (3) ◽  
pp. F807-F817 ◽  
Author(s):  
Renfang Song ◽  
Melissa Spera ◽  
Colleen Garrett ◽  
Samir S. El-Dahr ◽  
Ihor V. Yosypiv

ANG II AT2 receptor (AT2R)-deficient mice exhibit abnormal ureteric bud (UB) budding, increased incidence of double ureters, and vesicoureteral reflux. However, the role of the AT2R during UB morphogenesis and the mechanisms by which aberrant AT2R signaling disrupts renal collecting system development have not been fully defined. In this study, we mapped the expression of the AT2R during mouse metanephric development, examined the impact of disrupted AT2R signaling on UB branching, cell proliferation, and survival, and investigated the cross talk of the AT2R with the glial-derived neurotrophic factor ( GDNF)/ c-Ret/Wnt11 signaling pathway. Embryonic mouse kidneys express AT2R in the branching UB and the mesenchyme. Treatment of embryonic day 12.5 ( E12.5) metanephroi with the AT2R antagonist PD123319 or genetic inactivation of the AT2R in mice inhibits UB branching, decreasing the number of UB tips compared with control (34 ± 1.0 vs. 43 ± 0.6, P < 0.01; 36 ± 1.8 vs. 48 ± 1.3, P < 0.01, respectively). In contrast, treatment of metanephroi with the AT2R agonist CGP42112 increases the number of UB tips compared with control (48 ± 1.8 vs. 39 ± 12.3, P < 0.05). Using real-time quantitative RT-PCR and whole mount in situ hybridization, we demonstrate that PD123319 downregulates the expression of GDNF, c-Ret, Wnt11, and Spry1 mRNA levels in E12.5 metanephroi grown ex vivo. AT2R blockade or genetic inactivation of AT2R stimulates apoptosis and inhibits proliferation of the UB cells in vivo. We conclude that AT2R performs essential functions during UB branching morphogenesis via control of the GDNF/c-Ret/Wnt11 signaling pathway, UB cell proliferation, and survival.


1997 ◽  
Vol 273 (3) ◽  
pp. F463-F472 ◽  
Author(s):  
H. Sakurai ◽  
T. Tsukamoto ◽  
C. A. Kjelsberg ◽  
L. G. Cantley ◽  
S. K. Nigam

Much attention has recently focused upon hepatocyte growth factor (HGF) as a potential regulator of epithelial branching morphogenesis. However, since neither the HGF nor c-met "knockout" mice show abnormal kidney branching morphogenesis, we sought to analyze the relative importance of HGF in in vitro branching morphogenesis compared with other factors secreted by the embryonic kidney. Exploiting an assay that employs kidney epithelial cells (murine inner medullary collecting duct, mIMCD3) seeded in collagen cocultured with the embryonic kidney, we found that a tyrosine kinase inhibitor that is highly specific for the epidermal growth factor (EGF) receptor (EGFR), tyrphostin AG1478, inhibited mIMCD3 cell process formation (an early step in branching tubulogenesis) by 40%, whereas high concentrations of neutralizing anti-HGF antibodies had a lesser effect (20% inhibition), suggesting that EGFR ligands account for a larger fraction of branching morphogens secreted by the embryonic kidney than HGF. In addition, when an embryonic epithelial cell line derived from c-met (-/-) mice was cocultured with the embryonic kidney, these c-met (-/-) cells underwent process formation. EGFR ligands but not HGF were able to induce branching tubulogenesis in these cells. All EGFR ligands tested, including EGF, transforming growth factor-alpha, heparin-binding EGF, betacellulin, and amphiregulin, induced mIMCD3 cell tubulogenesis. EGFR ligands caused upregulation of urokinase, urokinase receptor, and matrix metalloprotease-1, and tubulogenesis could be inhibited by the metalloprotease inhibitor 1,10-phenanthroline. Our results support the notion that multiple parallel and potentially redundant growth factor-dependent pathways regulate branching tubulogenesis.


2009 ◽  
Vol 297 (1) ◽  
pp. F210-F217 ◽  
Author(s):  
Wei Wu ◽  
Shinji Kitamura ◽  
David M. Truong ◽  
Timo Rieg ◽  
Volker Vallon ◽  
...  

Deletion of integrin-β1 ( Itgb1) in the kidney collecting system led to progressive renal dysfunction and polyuria. The defect in the concentrating ability of the kidney was concomitant with decreased medullary collecting duct expression of aquaporin-2 and arginine vasopressin receptor 2, while histological examination revealed hypoplastic renal medullary collecting ducts characterized by increased apoptosis, ectasia and cyst formation. In addition, a range of defects from small kidneys with cysts and dilated tubules to bilateral renal agenesis was observed. This was likely due to altered growth and branching morphogenesis of the ureteric bud (the progenitor tissue of the renal collecting system), despite the apparent ability of the ureteric bud-derived cells to induce differentiation of the metanephric mesenchyme. These data not only support a role for Itgb1 in the development of the renal collecting system but also raise the possibility that Itgb1 links morphogenesis to terminal differentiation and ultimately collecting duct function and/or maintenance.


2001 ◽  
Vol 12 (5) ◽  
pp. 964-972
Author(s):  
TSUKASA TAKEMURA ◽  
SATOSHI HINO ◽  
HIROAKI KUWAJIMA ◽  
HIDEHIKO YANAGIDA ◽  
MITSURU OKADA ◽  
...  

Abstract. Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a member of the epidermal growth factor family of growth factors, is synthesized as a membrane-an-chored precursor (proHB-EGF) that is capable of stimulating adjacent cells in a juxtacrine manner. ProHB-EGF is cleaved in a protein kinase C-dependent process, to yield the soluble form. It was observed that HB-EGF acts as a morphogen for the collecting duct system in developing kidneys. HB-EGF protein was expressed in the ureteric bud of embryonic kidneys. Cultured mouse ureteric bud cells (UBC) produced HB-EGF via protein kinase C activation. After stimulation with phorbol ester (12-O-tetradecanoylphorbol-13-acetate) or recombinant soluble HB-EGF, UBC cultured in three-dimensional collagen gels formed short tubules with varied abundant branches. When proHB-EGF-transfected UBC were stimulated with 12-O-tetradecanoylphorbol-13-acetate and cultured in collagen gels, they exhibited linear growth, forming long tubular structures with few branches at the time of appearance of proHB-EGF on the cell surface. The structures exhibited a strong resemblance to the early branching ureteric bud of embryonic kidneys. When UBC were cultured in the presence of transforming growth factor-β and soluble HB-EGF, they formed long tubules and few branches, similar to the structures observed in proHB-EGF-transfected UBC. These cells exhibited apical-basolateral polarization and expression of the water channel aquaporin-2. These findings indicate that soluble HB-EGF and proHB-EGF induce branching tubulogenesis in UBC in different ways. Juxtacrine activation by proHB-EGF or the synergic action of soluble HB-EGF with transforming growth factor-β is important for well balanced morphogenesis of the collecting duct system.


Sign in / Sign up

Export Citation Format

Share Document