scholarly journals Angiotensin II AT2 receptor regulates ureteric bud morphogenesis

2010 ◽  
Vol 298 (3) ◽  
pp. F807-F817 ◽  
Author(s):  
Renfang Song ◽  
Melissa Spera ◽  
Colleen Garrett ◽  
Samir S. El-Dahr ◽  
Ihor V. Yosypiv

ANG II AT2 receptor (AT2R)-deficient mice exhibit abnormal ureteric bud (UB) budding, increased incidence of double ureters, and vesicoureteral reflux. However, the role of the AT2R during UB morphogenesis and the mechanisms by which aberrant AT2R signaling disrupts renal collecting system development have not been fully defined. In this study, we mapped the expression of the AT2R during mouse metanephric development, examined the impact of disrupted AT2R signaling on UB branching, cell proliferation, and survival, and investigated the cross talk of the AT2R with the glial-derived neurotrophic factor ( GDNF)/ c-Ret/Wnt11 signaling pathway. Embryonic mouse kidneys express AT2R in the branching UB and the mesenchyme. Treatment of embryonic day 12.5 ( E12.5) metanephroi with the AT2R antagonist PD123319 or genetic inactivation of the AT2R in mice inhibits UB branching, decreasing the number of UB tips compared with control (34 ± 1.0 vs. 43 ± 0.6, P < 0.01; 36 ± 1.8 vs. 48 ± 1.3, P < 0.01, respectively). In contrast, treatment of metanephroi with the AT2R agonist CGP42112 increases the number of UB tips compared with control (48 ± 1.8 vs. 39 ± 12.3, P < 0.05). Using real-time quantitative RT-PCR and whole mount in situ hybridization, we demonstrate that PD123319 downregulates the expression of GDNF, c-Ret, Wnt11, and Spry1 mRNA levels in E12.5 metanephroi grown ex vivo. AT2R blockade or genetic inactivation of AT2R stimulates apoptosis and inhibits proliferation of the UB cells in vivo. We conclude that AT2R performs essential functions during UB branching morphogenesis via control of the GDNF/c-Ret/Wnt11 signaling pathway, UB cell proliferation, and survival.

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1924 ◽  
Author(s):  
Mingdan Deng ◽  
Wei Dai ◽  
Valen Zhuoyou Yu ◽  
Lihua Tao ◽  
Maria Li Lung

Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the nasopharynx. Cylindromatosis lysine 63 deubiquitinase (CYLD), a NF-kB inhibitor, was reported as one of the top mutated candidate genes in NPC. NF-kB is an inducible transcription factor, contributing to cancer via regulating inflammation, angiogenesis, cell proliferation, and metastasis. In this study, the impact of CYLD on regulating the NF-kB signaling pathway and its contribution to NPC development was studied using in vitro and in vivo functional assays, together with single cell RNA sequencing to understand the NPC tumor microenvironment. CYLD was downregulated in NPC clinical specimens and multiple cell lines. Functional assays revealed CYLD inhibits NPC cell proliferation and migration in vitro and suppresses NPC tumorigenicity and metastasis in vivo by negatively regulating the NF-kB signaling pathway. Additionally, CYLD was able to inhibit fibroblast and endothelial stromal cell infiltration into the NPC tumor microenvironment. These findings suggest that CYLD inhibits NPC development and provides strong evidence supporting a role for CYLD inhibiting fibroblast and endothelial stromal cell infiltration into NPC via suppressing the NF-kB pathway.


2018 ◽  
Vol 399 (6) ◽  
pp. 593-602 ◽  
Author(s):  
Hongchao He ◽  
Jun Dai ◽  
Xiaoqun Yang ◽  
Xiaojing Wang ◽  
Fukang Sun ◽  
...  

AbstractThis study aimed to explore the effect ofMED27on the expression of epithelial-mesenchymal transition (EMT)-related proteins and β-catenin in adrenal cortical carcinoma (ACC). The functional mechanism ofMED27on ACC processes was also explored. The expression ofMED27was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). siRNA was utilized to knockdown the expression ofMED27. CCK8 assays were performed to evaluate SW-13 cell proliferation. Transwell assays were performed to assess the invasion ability, and wound healing assays were utilized to detect migration. A tumor xenograft mouse model was established to investigate the impact of silencingMED27on tumor growth and metastasis.MED27was highly expressed in ACC tissues and cells. Down-regulation ofMED27induced ACC cell apoptosis, and significantly attenuated ACC cell proliferation, invasion and metastasisin vivoandin vitro.MED27knockdown regulated the expression of EMT-related proteins and Wnt/β-catenin signaling pathway-related proteins. Our study investigated the function and mechanism ofMED27and validated thatMED27plays a negative role in ACC occurrence and progression and could be utilized as a new therapeutic target in ACC prevention and treatment.


2003 ◽  
Vol 88 (8) ◽  
pp. 3983-3988 ◽  
Author(s):  
Deborah J. Wake ◽  
Eva Rask ◽  
Dawn E. W. Livingstone ◽  
Stefan Söderberg ◽  
Tommy Olsson ◽  
...  

In idiopathic obesity circulating cortisol levels are not elevated, but high intraadipose cortisol concentrations have been implicated. 11β-Hydroxysteroid dehydrogenase type 1 (11HSD1) catalyzes the conversion of inactive cortisone to active cortisol, thus amplifying glucocorticoid receptor (GR) activation. In cohorts of men and women, we have shown increased ex vivo 11HSD1 activity in sc adipose tissue associated with in vivo obesity and insulin resistance. Using these biopsies, we have now validated this observation by measuring 11HSD1 and GR mRNA and examined the impact on intraadipose cortisol concentrations, putative glucocorticoid regulated adipose target gene expression (angiotensinogen and leptin), and systemic measurements of cortisol metabolism. From aliquots of sc adipose biopsies from 16 men and 16 women we extracted RNA for real-time PCR and steroids for immunoassays. Adipose 11HSD1 mRNA was closely related to 11HSD1 activity [standardized β coefficient (SBC) = 0.58; P &lt; 0.01], and both were positively correlated with parameters of obesity (e.g. for BMI, SBC = 0.48; P &lt; 0.05 for activity, and SBC = 0.63; P &lt; 0.01 for mRNA) and insulin sensitivity (log fasting plasma insulin; SBC = 0.44; P &lt; 0.05 for activity, and SBC = 0.33; P = 0.09 for mRNA), but neither correlated with urinary cortisol/cortisone metabolite ratios. Adipose GR-α and angiotensinogen mRNA levels were not associated with obesity or insulin resistance, but leptin mRNA was positively related to 11HSD1 activity (SBC = 0.59; P &lt; 0.05) and tended to be associated with parameters of obesity (BMI: SBC = 0.40; P = 0.09), fasting insulin (SBC = 0.65; P &lt; 0.05), and 11HSD1 mRNA (SBC = 0.40; P = 0.15). Intraadipose cortisol (142 ± 30 nmol/kg) was not related to 11HSD1 activity or expression, but was positively correlated with plasma cortisol. These data confirm that idiopathic obesity is associated with transcriptional up-regulation of 11HSD1 in adipose, which is not detected by conventional in vivo measurements of urinary cortisol metabolites and is not accompanied by dysregulation of GR. Although this may drive a compensatory increase in leptin synthesis, whether it has an adverse effect on intraadipose cortisol concentrations and GR-dependent gene regulation remains to be established.


2018 ◽  
Vol 50 (6) ◽  
pp. 2216-2228 ◽  
Author(s):  
Ting Zhang ◽  
Hongmei Wang ◽  
Qiang Li ◽  
Jianliang Fu ◽  
Jiankang Huang ◽  
...  

Background/Aims: This study focused on evaluating the effect of MALAT1 and MDM2 on ischemic stroke through regulation of the p53 signaling pathway. Materials: Bioinformatics analysis was performed to identify abnormally expressed lncRNAs, mRNAs and their associated pathways. Oxygen-glucose deprivation/reoxygenation (OGD/R) in cells and middle cerebral artery occlusion/reperfusion (MCAO/R) in mice were performed to simulate an ischemic stroke environment. Western blot and qRT-PCR were used to examine lncRNA expression and mRNA levels. Fluorescence in situ hybridization (FISH) LncRNA was used to locate mRNA. MTT and flow cytometry were performed to examine cell proliferation and apoptosis. Finally, immunohistochemistry was used to observe the expression of genes in vivo. Results: MALAT1 and MDM2, which exhibit strong expression in stroke tissues, were subjected to bioinformatics analysis, and the p53 pathway was chosen for further study. MALAT1, MDM2 and p53 signaling pathway-related proteins were all up regulated in OGD/R cells. Furthermore, Malat1, Mdm2 and p53 pathway related-proteins were also up regulated in MCAO/R mice. Both MALAT1 and MDM2 were localized in the nuclei. Down regulation of MALAT1 and MDM2 enhanced cell proliferation ability and reduced apoptosis, resulting in decreased infarct size in MCAO/R brains. Conclusion: These results indicate that MALAT1/MDM2/p53 signaling pathway axis may provide more effective clinical therapeutic strategy for patients with ischemic stroke.


2021 ◽  
Vol 20 ◽  
pp. 153303382199007
Author(s):  
Wenlin Liu ◽  
Jiandong Zhan ◽  
Rong Zhong ◽  
Rui Li ◽  
Xiaoli Sheng ◽  
...  

Background: Laryngeal cancer is one of the most common malignant tumors among head and neck cancers. Accumulating studies have indicated that long noncoding RNAs (lncRNAs) play an important role in laryngeal cancer occurrence and progression, however, the functional roles and relative regulatory mechanisms of lncRNA growth arrest-specific transcript 5 (GAS5) in laryngeal cancer progression remain unclear. Methods: The expression of lncRNA GAS5 in both laryngeal cancer tissues and cell lines was evaluated using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. The relationships between lncRNA GAS5 expression and clinical parameters were also analyzed. To determine the biological function of lncRNA GAS5, a lncRNA GAS5-specific plasmid was first transfected into laryngeal cancer cells using lentiviral technology. Cell counting kit-8 assay, flow cytometry, and Transwell assays were used to detect in vitro cell proliferation, apoptosis, cycle distribution, and metastasis abilities, respectively. Furthermore, in vivo cell growth experiments were also performed using nude mice. Additionally, western blotting was performed to identify the underlying regulatory mechanism. Results: In the current study, lncRNA GAS5 was downregulated in laryngeal cancer tissues and its low expression was closely associated with poor tumor differentiation, advanced TNM stage, lymph node metastasis, and shorter overall survival time. In addition, lncRNA GAS5 upregulation significantly inhibited laryngeal cancer cell proliferation both in vitro and in vivo. Moreover, in response to lncRNA GAS5 overexpression, more laryngeal cancer cells were arrested at the G2/M stage, accompanied by increased cell apoptosis rates and suppressed migration and invasion capacities. Mechanistically, our data showed that the overexpression of lncRNA GAS5 significantly regulated the PI3K/AKT/mTOR signaling pathway. Conclusion: LncRNA GAS5 might act as a suppressor gene during laryngeal cancer development, as it suppressed cell proliferation and metastasis by regulating the PI3K/AKT/mTOR signaling pathway; thus, lncRNA GAS5 is a promising therapeutic biomarker for the treatment of laryngeal cancer.


2021 ◽  
Vol 22 (2) ◽  
pp. 674
Author(s):  
Óscar Darío García-García ◽  
Marwa El Soury ◽  
David González-Quevedo ◽  
David Sánchez-Porras ◽  
Jesús Chato-Astrain ◽  
...  

Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


2016 ◽  
Vol 397 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Nicola Groll ◽  
Ferdinand Kollotzek ◽  
Jens Goepfert ◽  
Thomas O. Joos ◽  
Michael Schwarz ◽  
...  

Abstract The antiepileptic drug phenobarbital (PB) exerts hepatic effects related to cell proliferation and tumorigenesis which are closely linked to the Wnt/β-catenin signaling pathway. This pathway is, amongst others, regulated by calpain proteases. We now identified PB as an inhibitor of Wnt/β-catenin signaling in mouse hepatoma cells. Further analyses revealed that PB inhibits calpain activity, an effect which is at least in parts mediated by a transcriptional regulation of calpain mRNA levels and which is furthermore independent of the constitutive androstane receptor, the known mediator of most effects of PB in liver cells.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 354
Author(s):  
Subir Roy Chowdhury ◽  
Cheryl Peltier ◽  
Sen Hou ◽  
Amandeep Singh ◽  
James B. Johnston ◽  
...  

Mitochondrial respiration is becoming more commonly used as a preclinical tool and potential biomarker for chronic lymphocytic leukemia (CLL) and activated B-cell receptor (BCR) signaling. However, respiration parameters have not been evaluated with respect to dose of ibrutinib given in clinical practice or the effect of progression on ibrutinib treatment on respiration of CLL cells. We evaluated the impact of low and standard dose ibrutinib on CLL cells from patients treated in vivo on mitochondrial respiration using Oroboros oxygraph. Cytokines CCL3 and CCL4 were evaluated using the Mesoscale. Western blot analysis was used to evaluate the BCR and apoptotic pathways. We observed no difference in the mitochondrial respiration rates or levels of plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4), β-2 microglobulin (β-2 M) and lactate dehydrogenase (LDH) between low and standard doses of ibrutinib. This may confirm why clinical observations of the safety and efficacy of low dose ibrutinib are observed in practice. Of interest, we also observed that the mitochondrial respiration of CLL cells paralleled the increase in β-2 M and LDH at progression. Our study further supports mitochondrial respiration as a biomarker for response and progression on ibrutinib in CLL cells and a valuable pre-clinical tool.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dongyong Yang ◽  
Yanqing Wang ◽  
Yajing Zheng ◽  
Fangfang Dai ◽  
Shiyi Liu ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-aged women worldwide, however, the mechanisms and progression of PCOS still unclear due to its heterogeneous nature. Using the human granulosa-like tumor cell line (KGN) and PCOS mice model, we explored the function of lncRNA UCA1 in the pathological progression of PCOS. Results CCK8 assay and Flow cytometry were used to do the cell cycle, apoptosis and proliferation analysis, the results showed that UCA1 knockdown in KGN cells inhibited cell proliferation by blocking cell cycle progression and promoted cell apoptosis. In the in vivo experiment, the ovary of PCOS mice was injected with lentivirus carrying sh-UCA1, the results showed that knockdown of lncRNA UCA1 attenuated the ovary structural damage, increased the number of granular cells, inhibited serum insulin and testosterone release, and reduced the pro-inflammatory cytokine production. Western blot also revealed that UCA1 knockdown in PCOS mice repressed AKT activation, inhibitor experiment demonstrated that suppression of AKT signaling pathway, inhibited the cell proliferation and promoted apoptosis. Conclusions Our study revealed that, in vitro, UCA1 knockdown influenced the apoptosis and proliferation of KGN cells, in vivo, silencing of UCA1 regulated the ovary structural damage, serum insulin release, pro-inflammatory production, and AKT signaling pathway activation, suggesting lncRNA UCA1 plays an important role in the pathological progression of PCOS.


Sign in / Sign up

Export Citation Format

Share Document