scholarly journals PENENTUAN KONDISI OPTIMUM HIDROLISIS PATI OLEH ASPERGILLUS NIGER DALAM LIMBAH KULIT KENTANG

AGRICA ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Maria Tensiana Tima

Determination of optimum condition for starch hydrolysis Aspergillus niger in shell potato waste. Shell Potato waste can be used as a raw material for making bioethanol because it contains carbohydrate ingredients, starch. The process of making bioethanol from starchy materials can be done through the hydrolysis process, then proceed with the fermentation process. The hydrolysis process is carried out to hydrolyze starch into glucose with the help of amylase enzyme produced from the Aspergillus nigerbacterium. This research was carried out at the Chemistry Laboratory of FMIPA Malang State University. The purpose of this study was to determine the optimum conditions for hydrolysis of starch from potato skin which includes temperature, pH, time and amount of Aspergillus niger used. The glucose level produced from the hydrolysis process is determined using the Somogy-Nelson method. The results showed that the optimum conditions for starch hydrolysis to produce optimum glucose levels were using 1.25 grams of Aspergillus niger (equivalent to 50 mL of culture), at pH 5 and temperature of 300C within 2 hours, with glucose produced as much as 0.0167 g of 100 g of shell potato waste flour.

Author(s):  
Dwi Anna Anggorowati ◽  
Sriliani Sriliani ◽  
Anis Artiyani ◽  
Harimbi Setyawati ◽  
Kevin J

Coconut husk waste is waste that has not been used optimally, generally only as a craft material. Seeing the composition of coconut husk, it has the potential to be used as an alternative fuel, one of which is to produce bioethanol products. The purpose of this research was to utilize coconut husk waste as raw material for bioethanol production and to assess the effect of the number of enzymes and time of hydrolysis on the glucose levels produced. In this research, the authors focused on obtaining glucose levels from coconut husks by hydrolysis using cellulase enzymes with an activity of 700 EGU/g. The variations used in this research were the volume of cellulase enzymes (2, 3, 4, 5, 6) ml and the hydrolysis time (4, 8, 12) hours. After the coconut husk undergoes physical and chemical treatment using 10% NaOH, there is a decrease in lignin levels from 44% to 14% and there is an increase in cellulose levels from 24% to 38%, and the use of a cellulase enzyme volume of 2 ml with a hydrolysis time of 4 hours was more optimal with a glucose level of 0.32%.


EKUILIBIUM ◽  
2011 ◽  
Vol 10 (2) ◽  
Author(s):  
Ari Diana Susanti

<p><strong><em>Abstract: </em></strong><em>Pineapple skin is an agricultural waste that has a carbohydrate content of about 10:54% and the skin of pineapple juice glucose levels by 17% so it can be utilized to ethanol. Hydrolysis reaction is so slow that the reaction requires a catalyst. The catalyst used in this study were hydrochloric acid (HCl). This study aims to Learn how to use the skin of pineapple waste as alternative raw material manufacture bioethanol. The variables studied were the concentration of hydrochloric acid, the hydrolysis and fermentation time. Sorghum starch hydrolysis process using a three neck flask equipment, mercury stirrer, heating mantle, cooling behind and a thermometer to measure temperature. Sampling for glucose analysis performed when the temperature reaches 100<sup>o</sup>C every 45 minutes to obtain optimum glucose levels. Glucose samples were analyzed by using the Lane-Eynon. Data analysis showed the longer the higher the hydrolysis of the resulting glucose levels, but there are times when the glucose level will drop over time for glucose resulting damage due to continuous heating. In the fermentation process is carried out with fermentation time of 24 hours, 48 hours, 72 hours, 96 hours, 120 hours fiber. The most optimum bacterial activity is a long fermentation for 96 hours. Distillation process carried out on the final results of ethanol fermentation and obtained the highest levels of 31.399%.</em></p><p><strong><em> </em></strong><strong><em>Keywords</em></strong><em> : Pineapple skin, hydrolysis, fermentation, distillation, ethanol.</em></p><p> </p>


2015 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Elita Sari ◽  
Elly Desni Rahman ◽  
Munas Martynis ◽  
Shafira Fiona ◽  
Junialdi

Lignocellulosic biomass is a rich agricultural waste containing cellulose and hemicellulose. Bagasse (bagasse) is one of the waste biomass containing cellulose and hemicellulose approximately 47.7% which can be used to produce bioethanol. Enzymatic process is able to hydrolysis the polysaccharide compound into its constituent, sugars monomer compound. An enzymatic hydrolysis process converts cellulose to glucose by using cellulase enzymes. Some microorganisms producing the enzyme cellulase are Trichoderma viride and Aspergillus niger. The purpose of this research is to find out comparison of both these microorganism as a catalyst in the enzymatic hydrolysis process that produces the highest glucose levels and hydrolysis time. Hydrolysis process is done by varying the ratio between Tricoderma viride and Aspergillus niger of 1: 0; 0: 1; 0.5: 1 and 1: 0.5 and  time sampling  24, 48, 72, 96, 120. The results showed glucose acquisition as much as 360 mg/L with hidrolysis process  by hotplate  stirer and 660 mg/L with process by waterbath shaker at composition ratio of Trichoderma viride: Aspergillus niger 1: 0.5 and the hydrolysis time is 96 hours.


EKUILIBIUM ◽  
2013 ◽  
Vol 12 (1) ◽  
Author(s):  
Ari Diana Susanti

<p>Abstract: Pineapple skin is an agricultural waste that has a carbohydrate content of about<br />10:54% and the skin of pineapple juice glucose levels by 17% so it can be utilized to ethanol.<br />Hydrolysis reaction is so slow that the reaction requires a catalyst. The catalyst used in this<br />study were hydrochloric acid (HCl). This study aims to Learn how to use the skin of pineapple<br />waste as alternative raw material manufacture bioethanol. The variables studied were the<br />concentration of hydrochloric acid, the hydrolysis and fermentation time. Sorghum starch<br />hydrolysis process using a three neck flask equipment, mercury stirrer, heating mantle, cooling<br />behind and a thermometer to measure temperature. Sampling for glucose analysis performed<br />when the temperature reaches 100 ºC every 45 minutes to obtain optimum glucose levels.<br />Glucose samples were analyzed by using the Lane-Eynon. Data analysis showed the longer the<br />higher the hydrolysis of the resulting glucose levels, but there are times when the glucose level<br />will drop over time for glucose resulting damage due to continuous heating. In the fermentation<br />process is carried out with fermentation time of 24 hours, 48jam, 72 hours, 96 hours, 120 hours<br />fiber. The most optimum bacterial activity is a long fermentation for 96 hours. Distillation process<br />carried out on the final results of ethanol fermentation and obtained the highest levels of<br />31.399%.<br />keyword : Pineapple skin, hydrolysis, fermentation, distillation, ethanol.</p>


2021 ◽  
Vol 410 ◽  
pp. 411-417
Author(s):  
Anastasia A. Zvereva ◽  
Vladimir A. Shunin ◽  
Roman S. Voinkov ◽  
Konstantin L. Timofeev

The article lays out the findings aimed to develop the fine silver powder production technique for electronics industry by selecting the variable parameters whereby a number of powder grades can be produced in the existing production environment (JSC “Uralelektromed”, Russia). The tests for significance of the parameters of silver recovery by ascorbic acid such as pH level of nitrate silver solution, dispersant flow rate, initial concentration of silver, mixing rate and solution temperature made it possible to choose optimum conditions to produce powders of 0.8-6.3 μm in particle size, of 3.0-4.2 g/cm3 in tapped density and with the specific surface area of 2300-4300 cm2/g. Crystalline silver of 99.98 % purity served as a raw material for obtaining silver powders.


2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


2009 ◽  
Vol 76 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Dominik Mojzita ◽  
Marilyn Wiebe ◽  
Satu Hilditch ◽  
Harry Boer ◽  
Merja Penttilä ◽  
...  

ABSTRACT d-Galacturonic acid can be obtained by hydrolyzing pectin, which is an abundant and low value raw material. By means of metabolic engineering, we constructed fungal strains for the conversion of d-galacturonate to meso-galactarate (mucate). Galactarate has applications in food, cosmetics, and pharmaceuticals and as a platform chemical. In fungi d-galacturonate is catabolized through a reductive pathway with a d-galacturonate reductase as the first enzyme. Deleting the corresponding gene in the fungi Hypocrea jecorina and Aspergillus niger resulted in strains unable to grow on d-galacturonate. The genes of the pathway for d-galacturonate catabolism were upregulated in the presence of d-galacturonate in A. niger, even when the gene for d-galacturonate reductase was deleted, indicating that d-galacturonate itself is an inducer for the pathway. A bacterial gene coding for a d-galacturonate dehydrogenase catalyzing the NAD-dependent oxidation of d-galacturonate to galactarate was introduced to both strains with disrupted d-galacturonate catabolism. Both strains converted d-galacturonate to galactarate. The resulting H. jecorina strain produced galactarate at high yield. The A. niger strain regained the ability to grow on d-galacturonate when the d-galacturonate dehydrogenase was introduced, suggesting that it has a pathway for galactarate catabolism.


2018 ◽  
Vol 7 (3.36) ◽  
pp. 170
Author(s):  
Umar M. Ibrahim ◽  
Saeed I. Ahmed ◽  
Babagana Gutti ◽  
Idris M. Muhammad ◽  
Usman D. Hamza ◽  
...  

The combination of Irish potato waste (IPW) and poultry waste (PW) can form a synergy resulting into an effective substrate for a better biogas production due to some materials they contain. In this work, optimization and kinetic study of biogas production from anaerobic digestion of IPW and PW was investigated. Response surface methodology (RSM) was applied to optimize conditions such as initial pH, solids concentrations and waste ratios. The anaerobic digestion of the two wastes was carried out in the mesophilic condition and Box-Behnken design (BBD) was used to develop and analyze a predictive model which describes the biogas yield. The results revealed that there is a good fit between the experimental and the predicted biogas yield as revealed by the coefficient of determination (R2) value of 97.93%. Optimization using quadratic RSM predicts biogas yield of 19.75% at the optimal conditions of initial pH value 7.28, solids concentration (w/v) 9.85% and waste ratio (IPW:PW) 45:55%. The reaction was observed to have followed a first order kinetics having R2 and relative squared error (RSE) values of 90.61 and 9.63% respectively. Kinetic parameters, such as rate constant and half-life of the biogas yield were evaluated at optimum conditions to be 0.0392 day-1 and 17.68 days respectively. The optimum conditions and kinetic parameters generated from this research can be used to design real bio-digesters, monitor substrate concentrations, simulate biochemical processes and predict performance of bio-digesters using IPW and PW as substrate.  


Sign in / Sign up

Export Citation Format

Share Document