Pedogenic origin of Mezezo opal hosted in Ethiopian Miocene rhyolites

2020 ◽  
Vol 58 (2) ◽  
pp. 231-246
Author(s):  
Dereje Ayalew ◽  
Raphael Pik ◽  
Sally Gibson ◽  
Gezahegn Yirgu ◽  
Seid Ali ◽  
...  

ABSTRACT Opals are widespread within Miocene volcanic sequences in the North Shoa province of Central Ethiopia. The opal occurs as cavity fillings in a 5 m thick seam of glassy rhyolitic ignimbrite that is sandwiched between basaltic lava flows. The opals occur over a large area (>25 km2). X-ray diffraction analyses show that they are CT-type. The opals contain lower concentrations of trace elements (up to 100 times) than the host rhyolite. Ratios of most trace elements are, however, similar in both the opals and rhyolites. The opals have high δ18O values (28.4–33.8‰) that imply a low temperature of formation, between 20.55 and 25.74 °C. We therefore propose that the opals precipitated from meteoric waters that had percolated through and interacted with the host rhyolite. Field evidence indicates that this weathering and alteration occurred immediately after emplacement of the rhyolites, but prior to the extrusion of the overlying basalt flows.

2019 ◽  
Author(s):  
Minoru Maeda ◽  
Dipak Patel, Dr. ◽  
Hiroaki Kumakura, Dr. ◽  
Gen Nishijima, Dr. ◽  
Akiyoshi Matsumoto, Dr. ◽  
...  

1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 167-172
Author(s):  
Anastasiia P. Topnikova ◽  
Elena L. Belokoneva ◽  
Olga V. Dimitrova ◽  
Anatoly S. Volkov ◽  
Leokadiya V. Zorina

AbstractA new silicate-germanate K2Y[(Si3Ge)O10(OH)] was synthesized hydrothermally in a system Y2O3:GeO2:SiO2 = 1:1:2 (T = 280 °C; P = 90–100 atm.); K2CO3 was added to the solution as a mineralizer. Single-crystal X-ray diffraction experiment was carried out at low temperature (150 K). The unit cell parameters are a = 10.4975(4), b = 6.9567(2), c = 15.4001(6) Å, β = 104.894(4)°; V = 1086.86(7) Å3; space group is P 21/c. A novel complex anion is presented by corrugated (Si,Ge) tetrahedral layers connected by couples of YO6 octahedra into the mixed microporous framework with the channels along b and a axes, the maximal size of cross-section is ~5.6 Å. This structure has similarity with the two minerals: ring silicate gerenite (Ca,Na)2(Y,REE)3Si6O18 · 2H2O and chain silicate chkalovite Na2BeSi2O6. Six-member rings with 1̅ symmetry as in gerenite are distinguished in the new layer. They are mutually perpendicular to each other and connected by additional tetrahedra. Straight crossing chains in chkalovite change to zigzag four-link chains in the new silicate-germanate layer.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1572
Author(s):  
Baku Nagendra ◽  
Paola Rizzo ◽  
Christophe Daniel ◽  
Lucia Baldino ◽  
Gaetano Guerra

Poly(ʟ-lactide) (PLLA) films, even of high thickness, exhibiting co-crystalline and crystalline α phases with their chain axes preferentially perpendicular to the film plane (c⊥ orientation) have been obtained. This c⊥ orientation, unprecedented for PLLA films, can be achieved by the crystallization of amorphous films as induced by low-temperature sorption of molecules being suitable as guests of PLLA co-crystalline forms, such as N,N-dimethylformamide, cyclopentanone or 1,3-dioxolane. This kind of orientation is shown and quantified by two-dimensional wide-angle X-ray diffraction (2D-WAXD) patterns, as taken with the X-ray beam parallel to the film plane (EDGE patterns), which present all the hk0 arcs centered on the meridian. PLLA α-form films, as obtained by low-temperature guest-induced crystallization, also exhibit high transparency, being not far from those of the starting amorphous films.


2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Aycin Kaplan ◽  
Azmi Seyhun Kipcak ◽  
Fatma Tugce Senberber ◽  
Emek Moroydor Derun ◽  
Sabriye Piskin

AbstractIn the present study, magnesium borate synthesis was performed by a hydrothermal mixing method, with the use of magnesium waste scraps (W) as the magnesium source, along with boric acid (H) or boron oxide (B) as the boron source. For an environment-friendly approach, a solid waste of magnesium was used at low reaction temperatures. Results of X-ray diffraction analyses showed that admontite [MgO(B


Sign in / Sign up

Export Citation Format

Share Document